Table 6 Different results while using different parameters.
Parameters | Metrics | SVM | LR | GB | DT | Stacking | Average Score | |
|---|---|---|---|---|---|---|---|---|
SVM: C = 50 Gamma = auto Probability = true Degree = 1 LR: C = 200 GB: Max_features = 0.2 Max_depth = 10 Min_samples_leaf = 2 DT: Max_depth = 6 random_state = 42 StackingClassifier cv = 3, estimators = [('SVM,LR,GB,DT final_estimator = RF(Max_features = auto Max_depth = 10 Min_samples_leaf = 0.005 Min_samples_split = 0.005 n_jobs = -1 n_estimators = 10 random_state = 40 | Accuracy | Suicidal | 0.52 | 0.90 | 0.91 | 0.73 | 0.94 | 92% |
Non-Suicidal | 0.70 | 0.94 | 0.95 | 0.81 | 0.94 | |||
Precision | Suicidal | 0.92 | 0.87 | 0.91 | 0.76 | 0.95 | 91% | |
Non-Suicidal | 0.97 | 0.98 | 0.98 | 0.79 | 0.98 | |||
Recall | Suicidal | 0.73 | 0.94 | 0.92 | 0.75 | 0.96 | 94% | |
Non-Suicidal | 0.48 | 0.93 | 0.93 | 0.83 | 0.97 | |||
F1-Score | Suicidal | 0.67 | 0.90 | 0.91 | 0.72 | 0.94 | 91% | |
Non-Suicidal | 0.62 | 0.95 | 0.95 | 0.81 | 0.91 |