Table 5 Comparison of suggested models with existing DR classification research.

From: Uncertainty-aware diabetic retinopathy detection using deep learning enhanced by Bayesian approaches

Reference

Year

Method

Accuracy

Filos et al.36

2019

Ensemble MC-Dropout MFVI

87.1% 81.1%

Nguyen et al.37

2020

VGG-16 VGG-19

80% 82%

Taufiqurrahman et al.38

2020

MobileNetV2-SVM

85%

Yi et al.39

2021

Residual Attention EfficientNet

93.5%

Gangwar & Ravi40

2021

Hybrid Inception-ResNet-v2

82.18%

Islam et al.41

2022

SCL (Supervised Contrastive Learning)

84%

Alahmadi42

2022

Recalibration of style and content by DL

85%

Oulhadj et al.43

2022

DenseNet, InceptionV3, ResNet-50

85.28%

Butt et al.44

2022

ResNet-18 GoogleNet

89.29%

A.M. Fayyaz et al.45

2023

AlexNet ResNet-101

93.0%

Tiwari46

2023

ResNet50

91.60%

W. K. Wong47

2023

ShuffleNet ResNet-18

82% 75%

A. Jabbar48

2024

GoogleNet + ResNet

94%

Current Work

BCNN-MC Dropout BCNN-MFVI BCNN-Deterministic

97.68% 94.23% 91.44%