Table 5 Corresponding boundary conditions in major domains of GLMC considering non-wetted mode of membrane.

From: Computational evaluation of micropores wetting effect on the removal process of CO2 through the membrane contactor

Position

Shell side

Membrane

Tube

Mass

Momentum

Mass

Mass

z = 0

Convective flux

Outlet: Pressure, no viscous stress, p = 0

Insulated

\({\text{C}}_{{\text{CO}}_{2},\text{t}}=0\) \({\text{C}}_{\text{AMP},\text{tube}}= {\text{C}}_{\text{initial}}\)

z = L

\(\begin{array}{c}{\text{C}}_{\text{solvent},\text{s}}={\text{C}}_{\text{initial}}\\ {\text{C}}_{{\text{CO}}_{2},\text{s}}=0\end{array}\)

Inlet velocity V = V0,shell

Insulated

Convective flux

r = 0

Axial symmetry \(\frac{\partial {\text{C}}_{{\text{CO}}_{2},\text{t}}}{\partial \text{r}}=0\)

r = r1

\({\text{C}}_{{\text{CO}}_{2},\text{m}}={\text{C}}_{{\text{CO}}_{2},\text{t}}/{\text{m}}_{{\text{CO}}_{2}}\)

\({\text{C}}_{{\text{CO}}_{2},\text{t}}={{\text{m}}_{{\text{CO}}_{2}}\text{C}}_{{\text{CO}}_{2},\text{m}}\)

r = r2

\({\text{C}}_{{\text{CO}}_{2},\text{s}}={{\text{m}}_{{\text{CO}}_{2}}\text{C}}_{{\text{CO}}_{2},\text{m}}\)

No slip, Wall

\({\text{C}}_{{\text{CO}}_{2},\text{m}}={\text{C}}_{{\text{CO}}_{2},\text{s}}\)

r = r3

\(\frac{\partial {\text{C}}_{{\text{CO}}_{2},\text{shell}}}{\partial \text{r}}=0\)

No slip, Table Wall