Table 6 Comparative outcome of MMDoWA-ARDL approach with existing methods20,34,35,36,37.
Classifier | \(Accu_{y}\) | \({\text{Prec}}_{n}\) | \({\text{Reca}}_{l}\) | \(F_{{Measure}}\) |
|---|---|---|---|---|
NB | 95.13 | 92.82 | 97.09 | 94.99 |
DBN Model | 94.01 | 97.01 | 95.00 | 97.56 |
SVM Method | 99.05 | 97.34 | 90.11 | 91.20 |
DQSP Model | 91.60 | 90.58 | 99.01 | 97.34 |
Deep Q-Network | 90.79 | 98.34 | 91.30 | 91.69 |
DNN Algorithm | 97.10 | 97.64 | 96.17 | 90.57 |
Inception-ResNet | 90.59 | 92.22 | 92.79 | 95.01 |
CAPM | 92.36 | 91.34 | 99.13 | 97.84 |
MAR | 91.39 | 99.05 | 91.93 | 92.20 |
APT | 97.88 | 98.24 | 96.94 | 91.26 |
MMDoWA-ARDL | 99.39 | 99.39 | 99.39 | 99.39 |