Table 1 Vertex certainty values for minimally connected network \({{\mathcal{O}}_{\mathcal{M}}}_{\mathcal{I}\mathcal{N}}^{*}\)

From: A multi layered encryption framework using intuitionistic fuzzy graphs and graph theoretic domination for secure communication networks

Vertices

Certainty values

Vertices

Certainty values

Vertices

Certainty values

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{1}}\)

(0.5,0.3)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{21}}\)

(0.13,0.007)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{42}}\)

(0.148,0.077)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{2}}\)

(0.8,0.7)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{22}}\)

(0.13,0.007)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{43}}\)

(0.148,0.1155)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{3}}\)

(0.5,0.2)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{23}}\)

(0.13,0.007)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{51}}\)

(0.1115,0.1023)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{4}}\)

(0.7,0.5)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{24}}\)

(0.13,0.007)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{52}}\)

(0.1115,0.0682)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{5}}\)

(0.5,0.3)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{25}}\)

(0.13,0.007)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{53}}\)

(0.1115,0.0682)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{6}}\)

(0.7,0.4)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{26}}\)

(0.13,0.007)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{54}}\)

(0.1115,0.0682)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{7}}\)

(0,8,0.5)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{31}}\)

(0.136,0.05)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{61}}\)

(0.08,0.1875)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{11}}\)

(0.03,0.162)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{32}}\)

(0.136,0.09)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{62}}\)

(0.08,0.1875)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{12}}\)

(0.02,0.162)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{33}}\)

(0.045,0.07)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{63}}\)

(0.08,0.1875)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{13}}\)

(0.02,0.162)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{34}}\)

(0.045,0.07)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{71}}\)

(0.127,0.27)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{14}}\)

(0.02,0.162)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{35}}\)

(0.03,0.05)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{72}}\)

(0.127,0.27)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{15}}\)

(0.01,0.162)

\({\zeta }_{{\calligra{\rotatebox[origin=c]{22}{d}}}_{41}}\)

(0.148,0.1155)