Table 9 Performance evaluation and comparison of various models on the NTHU-DDD dataset.

From: Real-time driver drowsiness detection using transformer architectures: a novel deep learning approach

Model

Precision (in %)

Recall (in %)

F1 Score (in %)

Accuracy (in %)

ViT Transformer

99

100

100

99.52 \((\pm 0.09\))

Swin Transformer

99

99

99

98.76 \((\pm 0.11\))

VGG19 + Attention

99.44

98.52

98.98

99.07 \((\pm 0.12\))

VGG19

98

98

98

98.66 \((\pm 0.13\))

DenseNet169

98.52

98.44

98.48

98.60 \((\pm 0.12\))

ResNet50V2

97.41

99.48

98.43

98.55 \((\pm 0.13\))

InceptionResNetV2

98.74

94.70

96.68

97.02 \((\pm 0.14\))

InceptionV3

98.71

97.74

98.22

98.38 \((\pm 0.13\))

MobileNet

90.20

89.52

89.86

91.15 \((\pm 0.12\))