Table 2 Hyperparameter search ranges and optimal configurations for each model.

From: Improved CKD classification based on explainable artificial intelligence with extra trees and BBFS

Model

Hyperparameter

Search Range

Best Value

ET

n_estimators

[50, 100, 150, 200]

50

 

criterion

[‘gini’, ‘entropy’]

gini

RF

n_estimators

[100, 150, 200]

150

 

criterion

[‘gini’, ‘entropy’]

entropy

DT

splitter

[‘best’, ‘random’]

random

 

criterion

[‘gini’, ‘entropy’]

entropy

BC

n_estimators

[10, 50, 100]

50

 

max_samples

[0.5, 0.7, 1.0]

1.0

AdaBoost

n_estimators

[50, 100, 150]

100

 

learning_rate

[0.01, 0.1, 0.5, 1.0]

0.01

KNN

n_neighbors

[5, 10, 20, 30, 40]

30

 

weights

[‘uniform’, ‘distance’]

distance