Table 3 Hyperparameter of ML algorithm obtained as a result of TPE.
From: An efficient bearing fault detection strategy based on a hybrid machine learning technique
Hyperparameters | CNN models for feature extraction | |||||||
|---|---|---|---|---|---|---|---|---|
Densenet201 | Vgg16 | Vgg19 | MobileNetv2 | Inceptionv3 | ResNet50 | Inceptionresnetv2 | ||
SVM | c | 0.080756609525 | 0.333255597347 | 50.49285933919 | 0.183770163831 | 0.056487139653 | 0.069750972994 | 47.96146722467 |
Gamma | 0.153368758782 | 0.201320138608 | 0.010661107491 | 0.136295952469 | 0.016368895980 | 0.053690736485 | 0.939256254370 | |
Kernel | Linear | Linear | LINEAR | LINEAR | LINEAR | LINEAR | Linear | |
KNN | n_neighbors | 3 | 19 | 8 | 7 | 11 | 5 | 10 |
p | 1 | 1 | 1 | 2 | 1 | 1 | 2 | |
DT | max_depth | 17 | 14 | 12 | 11 | 14 | 13 | 18 |
min_samples_split | 3 | 18 | 4 | 8 | 14 | 2 | 10 | |
min_samples_leaf’ | 8 | 4 | 7 | 4 | 14 | 16 | 18 | |
RF | n_estimators | 170 | 170 | 190 | 180 | 150 | 100 | 140 |
max_depth | 19 | 17 | 12 | 14 | 9 | 20 | 14 | |
min_samples_split | 14 | 14 | 11 | 11 | 2 | 5 | 18 | |
min_samples_leaf | 9 | 8 | 3 | 6 | 8 | 3 | 7 | |