Table 4 \(f\left(x\right)\) implementation steps.

From: An efficient bearing fault detection strategy based on a hybrid machine learning technique

\(f\left(x\right)\)

\(Define the initial hyperparameters set {C}_{0}\)

\(1. Define the search space according to Table 2.\)

\(2. Initialize: {v}^{0}=ac{c}_{val}^{0}-\lambda * {t}_{val}^{0}.\)

\(D=\left\{\left({c}^{0},{v}^{0}\right)\right\},{v}_{best}\)

\({v}^{0} {c}_{best}={c}^{0}\)

\(3. for i \leftarrow 1 to {n}_{Iter} do\)

\(calculat l\left(c\right) { D}_{good}=\left\{\left(c , v\right) \mid v {>v}^{*}\right\}\)

\({calculat l\left(c\right) D}_{bad}=\left\{\left(c , v\right) \mid v {\le v}^{*}\right\}\)

\(update: {v}^{*}=\gamma \times {v}_{best}\)

\(choose the new hyperparameters set: {c}^{i+1}= {c}^{0} =argmax\frac{l\left(c\right)}{g(c)}\)

\(Calculate the new evaluation value: {v}^{i+1}=ac{c}_{val}^{i+1}-\lambda \times {t}_{val}^{t+1}\)

\(4. end\)