Table 6 The calculated metrics of CNN models according to ML algorithms.
From: An efficient bearing fault detection strategy based on a hybrid machine learning technique
Model | Method | Key metrics used to evaluate the performance of a model | ||||||
|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1 Score | MAE | RMSE | R2 | ||
VGG16 | SVM | 0.9460 | 0.9470 | 0.9461 | 0.9461 | 0.2769 | 1.3703 | 0.7693 |
DT | 0.7260 | 0.7260 | 0.7284 | 0.7281 | 1.1700 | 2.5883 | 0.1772 | |
KNN | 0.8706 | 0.8806 | 0.8717 | 0.8723 | 0.5835 | 1.8555 | 0.5771 | |
RF | 0.8930 | 0.8966 | 0.8951 | 0.8925 | 0.4490 | 1.5946 | 0.6877 | |
MobileNetV2 | SVM | 0.9276 | 0.9275 | 0.9289 | 0.9278 | 0.3910 | 1.6240 | 0.6805 |
DT | 0.6853 | 0.7066 | 0.6902 | 0.6950 | 1.3737 | 2.7989 | 0.0510 | |
KNN | 0.8146 | 0.8348 | 0.8196 | 0.8200 | 0.8910 | 2.3181 | 0.3448 | |
RF | 0.8482 | 0.8469 | 0.8535 | 0.8471 | 0.7128 | 2.0611 | 0.4820 | |
InceptionV3 | SVM | 0.8940 | 0.8946 | 0.8924 | 0.8914 | 0.5468 | 1.8697 | 0.5765 |
DT | 0.6720 | 0.6676 | 0.6685 | 0.6668 | 1.4745 | 2.9125 | -0.0274 | |
KNN | 0.7851 | 0.8152 | 0.7899 | 0.7834 | 1.0478 | 2.5120 | 0.2356 | |
RF | 0.8136 | 0.8246 | 0.8133 | 0.8074 | 0.9327 | 2.4164 | 0.2927 | |
Vgg19 | SVM | 0.9470 | 0.9486 | 0.9476 | 0.9477 | 0.25458 | 1.25796 | 0.7987 |
DT | 0.7331 | 0.7430 | 0.7337 | 0.7339 | 1.0906 | 2.4757 | 0.2203 | |
KNN | 0.8920 | 0.9070 | 0.8972 | 0.8959 | 0.4287 | 1.5662 | 0.6879 | |
RF | 0.9175 | 0.9177 | 0.9191 | 0.9172 | 0.3289 | 1.3360 | 0.7729 | |
ResNet50 | SVM | 0.9551 | 0.9554 | 0.9537 | 0.9542 | 0.21384 | 1.1629 | 0.8374 |
DT | 0.7637 | 0.7636 | 0.7558 | 0.7574 | 1.0264 | 2.4281 | 0.2912 | |
KNN | 0.9042 | 0.9147 | 0.9005 | 0.9048 | 0.5285 | 1.8865 | 0.5722 | |
RF | 0.9063 | 0.9080 | 0.9030 | 0.9038 | 0.4714 | 1.7405 | 0.6358 | |
DenseNet201 | SVM | 0.9215 | 0.9235 | 0.9263 | 0.9239 | 0.3604 | 1.4858 | 0.7321 |
DT | 0.7739 | 0.7763 | 0.7827 | 0.7785 | 0.9633 | 2.3179 | 0.3482 | |
KNN | 0.8706 | 0.8857 | 0.8762 | 0.8779 | 0.5957 | 1.8930 | 0.5652 | |
RF | 0.8808 | 0.8826 | 0.8868 | 0.8836 | 0.5142 | 1.6937 | 0.6520 | |
Inceptionresnetv2 | SVM | 0.7250 | 0.7219 | 0.7217 | 0.7211 | 1.1578 | 2.5570 | 0.1897 |
DT | 0.5885 | 0.5970 | 0.5858 | 0.5876 | 1.6629 | 2.9869 | -0.1055 | |
KNN | 0.6649 | 0.6705 | 0.6579 | 0.6503 | 1.3584 | 2.6645 | 0.1069 | |
RF | 0.7668 | 0.7642 | 0.7612 | 0.7598 | 0.9602 | 2.3049 | 0.3317 | |