Table 6 The calculated metrics of CNN models according to ML algorithms.

From: An efficient bearing fault detection strategy based on a hybrid machine learning technique

Model

Method

Key metrics used to evaluate the performance of a model

Accuracy

Precision

Recall

F1 Score

MAE

RMSE

R2

VGG16

SVM

0.9460

0.9470

0.9461

0.9461

0.2769

1.3703

0.7693

DT

0.7260

0.7260

0.7284

0.7281

1.1700

2.5883

0.1772

KNN

0.8706

0.8806

0.8717

0.8723

0.5835

1.8555

0.5771

RF

0.8930

0.8966

0.8951

0.8925

0.4490

1.5946

0.6877

MobileNetV2

SVM

0.9276

0.9275

0.9289

0.9278

0.3910

1.6240

0.6805

DT

0.6853

0.7066

0.6902

0.6950

1.3737

2.7989

0.0510

KNN

0.8146

0.8348

0.8196

0.8200

0.8910

2.3181

0.3448

RF

0.8482

0.8469

0.8535

0.8471

0.7128

2.0611

0.4820

InceptionV3

SVM

0.8940

0.8946

0.8924

0.8914

0.5468

1.8697

0.5765

DT

0.6720

0.6676

0.6685

0.6668

1.4745

2.9125

-0.0274

KNN

0.7851

0.8152

0.7899

0.7834

1.0478

2.5120

0.2356

RF

0.8136

0.8246

0.8133

0.8074

0.9327

2.4164

0.2927

Vgg19

SVM

0.9470

0.9486

0.9476

0.9477

0.25458

1.25796

0.7987

DT

0.7331

0.7430

0.7337

0.7339

1.0906

2.4757

0.2203

KNN

0.8920

0.9070

0.8972

0.8959

0.4287

1.5662

0.6879

RF

0.9175

0.9177

0.9191

0.9172

0.3289

1.3360

0.7729

ResNet50

SVM

0.9551

0.9554

0.9537

0.9542

0.21384

1.1629

0.8374

DT

0.7637

0.7636

0.7558

0.7574

1.0264

2.4281

0.2912

KNN

0.9042

0.9147

0.9005

0.9048

0.5285

1.8865

0.5722

RF

0.9063

0.9080

0.9030

0.9038

0.4714

1.7405

0.6358

DenseNet201

SVM

0.9215

0.9235

0.9263

0.9239

0.3604

1.4858

0.7321

DT

0.7739

0.7763

0.7827

0.7785

0.9633

2.3179

0.3482

KNN

0.8706

0.8857

0.8762

0.8779

0.5957

1.8930

0.5652

RF

0.8808

0.8826

0.8868

0.8836

0.5142

1.6937

0.6520

Inceptionresnetv2

SVM

0.7250

0.7219

0.7217

0.7211

1.1578

2.5570

0.1897

DT

0.5885

0.5970

0.5858

0.5876

1.6629

2.9869

-0.1055

KNN

0.6649

0.6705

0.6579

0.6503

1.3584

2.6645

0.1069

RF

0.7668

0.7642

0.7612

0.7598

0.9602

2.3049

0.3317