Table 5 Comparison of state of the Art approaches on CICIDS2018 dataset.
Ref | Methods | FS-Method | AUC | F1-score |
|---|---|---|---|---|
CatBoost | – | 0.951 | 0.934 | |
DT | – | 0.910 | 0.886 | |
NB | – | 0.952 | 0.927 | |
RF | – | 0.954 | 0.921 | |
XGBoost | – | 0.911 | 0.887 | |
DKNN-Kronecker_Neural_Network | CRDO | – | 0.95 | |
MP-CVAE (VariationalAutoEncoder) | – | 0.95 | 0.96 | |
ICVAE-BSM (Variational_AutoEncoder) | BPSO | 0.965 | 0.956 | |
ID-RDRL (Deep Q learning) | RFE | 0.982 | 0.947 | |
MAFIDS (Multi-Agent Feature Selection-DQL) | MFS | 0.987 | 0.971 | |
– | Our proposed model (DNN-BSAR-AE-LSO) | DNN | 0.991 | 0.986 |