Table 3 Comparative analysis of DCFNN-SOCVDC approach with existing methods39,40,41,42.

From: Deep convolutional fuzzy neural networks with stork optimization on chronic cardiovascular disease monitoring for pervasive healthcare services

Models

\(Accu_{y}\)

\(Prec_{n}\)

\(Reca_{l}\)

\(F1_{score}\)

SMO classifier

84.16

81.95

83.19

87.06

SVM

96.72

97.22

94.65

89.74

Random forest

94.25

96.39

96.30

92.29

K-nearest

80.65

94.28

89.19

93.98

EDLACNN

94.10

89.30

90.28

93.28

Bagging algorithm

97.47

94.20

96.64

89.57

ACVD-HBOMDL

98.81

97.32

95.56

97.70

AOA method

98.90

98.85

98.95

98.80

DCFNN model

95.50

93.40

94.00

92.60

DCFNN-SOCVDC

99.05

99.05

99.05

99.04