Table 1 Main results on object detection. We use AP on different settings to evaluate results. Res101, Res50 represents using ResNet101 and ResNet50 as backbones.

From: Instance mask alignment for object detection knowledge distillation

 

Method

mAP

\(AP_{50}\)

\(AP_{75}\)

\(AP_S\)

\(AP_M\)

\(AP_L\)

Teacher

FCOS-Res101

40.8

60.0

44.0

24.2

44.3

52.4

Student

FCOS-Res50

38.5

57.7

41.0

21.9

42.8

48.6

 

GID8

42.0

60.4

45.5

25.6

45.8

54.2

 

FRS9

40.9

60.3

43.6

25.7

45.2

51.2

 

FGD10

42.1

–

–

27.0

46.0

54.6

 

IMA (Ours)

42.4

61.0

45.8

26.6

45.9

54.8

Teacher

Faster RCNN-Res101

39.8

60.1

43.3

22.5

43.6

52.8

Student

Faster RCNN-Res50

38.4

59.0

42.0

21.5

42.1

50.3

 

KD-Zero11

38.4

59.4

41.7

22.7

41.8

45.9

 

FitNet12

38.8

59.6

41.8

22.3

42.2

50.7

 

FGFI13

39.4

60.3

43.0

22.9

42.5

52.0

 

FGD10

40.4

–

–

22.8

44.5

53.5

 

IMA (Ours)

40.6

60.9

43.9

23.0

44.5

54.0

Teacher

RetinaNet101-Res101

38.9

58.0

41.5

21.0

42.8

52.4

Student

RetinaNet50-Res50

37.4

56.7

39.6

20.0

40.7

49.7

 

KD-Zero11

36.8

56.6

39.4

21.9

40.6

48.2

 

FitNet12

36.3

56.0

39.0

20.1

40.3

47.1

 

FGFI13

37.3

57.1

40.0

21.0

41.5

49.7

 

FGD10

39.6

–

–

22.9

44.3

53.4

 

IMA (Ours)

39.7

58.6

41.4

22.7

42.9

51.3

  1. Significant values are in bold.