Table 5 The performance comparison of MB-LSTM with the baseline methods in KDEda and Cl.
From: MBLSTM is a contextual interaction refined method for time series prediction
Methods | Accuracy | Precision | Recall | F1-score |
|---|---|---|---|---|
SVM + KDEda + Cl | 0.701 | 0.896 | 0.752 | 0.818 |
GBM + KDEda + Cl | 0.731 | 0.705 | 0.694 | 0.749 |
LSTM + KDEda + Cl | 0.728 | 0.894 | 0.789 | 0.838 |
Bi-LSTM + KDEda + Cl | 0.756 | 0.896 | 0.820 | 0.857 |
Mogrifier LSTM + KDEda + Cl | 0.772 | 0.889 | 0.851 | 0.870 |
SAnD + KDEda + Cl | 0.779 | 0.913 | 0.822 | 0.874 |
AdaCare + KDEda + Cl | 0.78 | 0.918 | 0.838 | 0.869 |
MB-LSTM + KDEda + Cl | 0.783 | 0.918 | 0.857 | 0.876 |