Table 1 Describe the parameter’s constants in the silicon (Si) SI units.

From: A Study of the effect of eigenvalues on the Moore Gibson Thompson model under photoacoustic excitation of semiconductors

Symbol

Si

Unit

\(\lambda\)

\(6.4 \times 10^{10}\)

\({\text{N/m}}^{{2}}\)

\(\mu\)

\(6.5 \times 10^{10}\)

\({\text{N/m}}^{{2}}\)

\(\rho\)

\(2330\)

\({\text{kg/m}}^{{3}}\)

\(T_{0}\)

\(800\)

\({\text{K}}\)

\(\tau\)

\(5 \times 10^{ - 5}\)

\({\text{s}}\)

\(D_{E}\)

\(2.5 \times 10^{ - 3}\)

\({\text{kg/m}}^{{3}}\)

\(E_{g}\)

\(1.11\)

\({\text{eV}}\)

\(d_{n}\)

\(- \;9 \times 10^{ - 31}\)

\({\text{m}}^{{3}}\)

\(\alpha_{t}\)

\(2.6 \times 10^{ - 6}\)

\({\text{K}}^{{ - {1}}}\)

\(C_{E}\)

\(695\)

\({\text{J/(kg}}\,{\text{.K)}}\)

\(k\)

\(150\)

\({\text{W}}\,.{\text{m}}^{{ - {1}}} {\text{.K}}^{{ - {1}}}\)

\(s\)

\(2\)

\({\text{m/s}}\)

\(C_{s}\)

\(8430\)

\({\text{m/s}}\)

\(\beta\)

\(2.56 \cdot 10^{ - 6}\)

\(^{^\circ } C\)

\(C_{r}\)

\(1.666\)

 

\(\theta_{0}\)

\(1\)

 

\(N_{0}\)

\(1\)