Table 2 Results for the baseline models trained and validated using only wound images from the new multimodal dataset, and tested on the DFUC 2022 test set, which also comprises only wound images. All wound images are \(640 \times 480\) pixels. Ep - epoch; Tr - train; V - validation; Te- test; UN - U-Net; IoU - intersection over union; DSC - Dice similarity coefficient; FPE - false positive error; FNE - false negative error. Note that no pretraining and no pre- or post-processing was used in these experiments.

From: Gaussian random fields as an abstract representation of patient metadata for multimodal medical image segmentation

Model

Ep

Tr-IoU

Tr-Loss

Tr-DSC

V-IoU

V-Loss

V-DSC

Te-IoU

Te-DSC

FPE

FNE

VGG16 UN

84

0.7866

0.1499

0.8722

0.4602

0.4939

0.6032

0.3482

0.4652

0.0625

0.4171

ResNet50 UN

60

0.8324

0.1184

0.9039

0.4745

0.4745

0.6304

0.4007

0.5213

0.0525

0.3884

EfficientNetB0 UN

64

0.8741

0.0920

0.9301

0.5344

0.3833

0.6745

0.4603

0.5835

0.0169

0.3482

ConvNeXt UN

40

0.5510

0.3163

0.6967

0.3964

0.5456

0.5531

0.3288

0.4519

0.0425

0.4422

HarDNet-CWS

44

0.9346

0.0972

0.9658

0.5887

0.5246

0.7018

0.4670

0.5908

0.0169

0.3637