Table 2 Results for the baseline models trained and validated using only wound images from the new multimodal dataset, and tested on the DFUC 2022 test set, which also comprises only wound images. All wound images are \(640 \times 480\) pixels. Ep - epoch; Tr - train; V - validation; Te- test; UN - U-Net; IoU - intersection over union; DSC - Dice similarity coefficient; FPE - false positive error; FNE - false negative error. Note that no pretraining and no pre- or post-processing was used in these experiments.
Model | Ep | Tr-IoU | Tr-Loss | Tr-DSC | V-IoU | V-Loss | V-DSC | Te-IoU | Te-DSC | FPE | FNE |
|---|---|---|---|---|---|---|---|---|---|---|---|
VGG16 UN | 84 | 0.7866 | 0.1499 | 0.8722 | 0.4602 | 0.4939 | 0.6032 | 0.3482 | 0.4652 | 0.0625 | 0.4171 |
ResNet50 UN | 60 | 0.8324 | 0.1184 | 0.9039 | 0.4745 | 0.4745 | 0.6304 | 0.4007 | 0.5213 | 0.0525 | 0.3884 |
EfficientNetB0 UN | 64 | 0.8741 | 0.0920 | 0.9301 | 0.5344 | 0.3833 | 0.6745 | 0.4603 | 0.5835 | 0.0169 | 0.3482 |
ConvNeXt UN | 40 | 0.5510 | 0.3163 | 0.6967 | 0.3964 | 0.5456 | 0.5531 | 0.3288 | 0.4519 | 0.0425 | 0.4422 |
HarDNet-CWS | 44 | 0.9346 | 0.0972 | 0.9658 | 0.5887 | 0.5246 | 0.7018 | 0.4670 | 0.5908 | 0.0169 | 0.3637 |