Table 3 Results for the HarDNet-CWS model trained and validated using the new multimodal dataset, and tested on the DFUC 2022 test set (image size = \(640 \times 480\) pixels) using GRFs. i - default value of GRF power spectrum integer component; IoU - intersection over union; DSC - Dice similarity coefficient; FPE - false positive error; FNE - false negative error; DOB - date of birth; HDD - health and disability decile. Note that no pretraining, augmentation, or post-processing was used in these experiments.

From: Gaussian random fields as an abstract representation of patient metadata for multimodal medical image segmentation

Metadata

i

Epoch

Train IoU

Train Loss

Train DSC

Val IoU

Val Loss

Val DSC

Test IoU

Test DSC

FPE

FNE

DOB

2

44

0.9323

0.1012

0.9647

0.5615

0.5539

0.6760

0.4699

0.5944

0.0169

0.3562

DOB

5

54

0.9566

0.0670

0.9778

0.5654

0.5866

0.6842

0.4652

0.5894

0.0169

0.3475

Gender

2

34

0.8810

0.1659

0.9359

0.5554

0.5277

0.6708

0.4703

0.5942

0.0169

0.3575

Gender

5

36

0.8843

0.1635

0.9376

0.5832

0.5038

0.6976

0.4641

0.5889

0.0169

0.3621

HDD

2

47

0.9454

0.0834

0.9718

0.5825

0.5657

0.6962

0.4706

0.5946

0.0169

0.3424

HDD

5

48

0.9394

0.0893

0.9685

0.5672

0.5652

0.6819

0.4626

0.5873

0.0169

0.3465