Table 10 Comparison analysis of ACC and DC using ML/DL on DTI datasets.

From: Predicting drug-target interactions using machine learning with improved data balancing and feature engineering

Dataset

Composition

Model

Accuracy

Precision

Sensitivity

Specificity

F1score

Kappa

MCC

ROC-AUC

MAE

MSE

RMSE

BindingDB_Kd

ACC

DTC

96.47

96.47

96.47

96.45

96.47

92.93

92.93

96.66

3.53

3.53

18.80

MLP

97.13

97.14

97.13

97.91

97.13

94.26

94.27

99.15

2.87

2.87

16.95

RFC

97.46

97.49

97.46

98.82

97.46

94.91

94.95

99.42

2.54

2.54

15.95

DC

DTC

96.01

96.01

96.01

95.75

96.01

92.02

92.02

96.24

3.99

3.99

19.97

MLP

96.95

96.96

96.95

97.75

96.95

93.90

93.91

99.43

3.05

3.05

17.47

RFC

97.09

97.12

97.09

98.22

97.09

94.18

94.21

99.31

2.91

2.91

17.06

BindingDB_Ki

ACC

DTC

89.68

89.68

89.68

89.92

89.68

79.36

79.36

90.70

10.32

10.32

32.13

MLP

89.61

89.66

89.61

91.35

89.60

79.22

79.27

96.14

10.39

10.39

32.24

RFC

91.69

91.74

91.69

93.40

91.69

83.39

83.44

97.32

8.31

8.31

28.82

DC

DTC

89.75

89.75

89.75

89.82

89.75

79.49

79.49

90.83

10.25

10.25

32.02

MLP

90.71

90.77

90.71

92.62

90.7

81.41

81.47

97.01

9.29

9.29

30.49

RFC

91.61

91.64

91.61

92.77

91.61

83.22

83.25

97.39

8.39

8.39

28.96

BindingDB_IC50

ACC

DTC

94.12

94.12

94.12

94.04

94.12

88.23

88.23

94.77

5.88

5.88

24.26

MLP

94.27

94.39

94.27

96.92

94.26

88.53

88.66

98.36

5.73

5.73

23.94

RFC

95.40

95.41

95.40

96.42

95.39

90.79

90.81

98.97

4.60

4.60

21.46

DC

DTC

94.11

94.11

94.11

94.1

94.11

88.22

88.22

94.8

5.89

5.89

24.27

MLP

94.69

94.71

94.69

95.77

94.69

89.38

89.41

98.85

5.31

5.31

23.04

RFC

95.37

95.39

95.37

96.32

95.37

90.74

90.75

98.99

4.63

4.63

21.52