Table 3 Bi-harmonic Kuramoto model parameters for each dynamical regime. Varying the first harmonic phase shift, \(\gamma _1\), produces the four different behaviors.

From: Modeling nonlinear oscillator networks using physics-informed hybrid reservoir computing

Regime

N

\(\mu\)

\(\Delta \omega\)

K

\(\gamma _1\)

\(\gamma _2\)

a

Synchrony

10

0.0

0.01

1.0

\(2\pi\)

\(\pi\)

0.2

Asynchrony

10

0.0

0.05

5.0

\(\pi\)

\(\pi\)

0.2

Heteroclinic Cycles

10

0.0

0.01

1.0

1.3

\(\pi\)

0.2

Partial Synchrony

10

0.0

0.01

1.0

1.5

\(\pi\)

0.2