Table 3 Bi-harmonic Kuramoto model parameters for each dynamical regime. Varying the first harmonic phase shift, \(\gamma _1\), produces the four different behaviors.
From: Modeling nonlinear oscillator networks using physics-informed hybrid reservoir computing
Regime | N | \(\mu\) | \(\Delta \omega\) | K | \(\gamma _1\) | \(\gamma _2\) | a |
|---|---|---|---|---|---|---|---|
Synchrony | 10 | 0.0 | 0.01 | 1.0 | \(2\pi\) | \(\pi\) | 0.2 |
Asynchrony | 10 | 0.0 | 0.05 | 5.0 | \(\pi\) | \(\pi\) | 0.2 |
Heteroclinic Cycles | 10 | 0.0 | 0.01 | 1.0 | 1.3 | \(\pi\) | 0.2 |
Partial Synchrony | 10 | 0.0 | 0.01 | 1.0 | 1.5 | \(\pi\) | 0.2 |