Table 7 External validation suggested by Golbraikh and Tropsha (2002)73.
Parameter | Condition | XGB | AB | RF | CB |
|---|---|---|---|---|---|
\(\:R=\frac{n\sum\:\left({d}_{i}{y}_{i}\right)-\left(\sum\:{d}_{i})\right(\sum\:{y}_{i})}{\sqrt{[n\sum\:{d}_{i}^{2}-{\left({\sum\:d}_{i}\right)}^{2}\left]\:\right[n\sum\:{y}_{i}^{2}-{\left(\sum\:{y}_{i}\right)}^{2}]}}\) | \(\:R\:>\:0.8\) | 0.9790 ✔ | 0.9463 ✔ | 0.9706 ✔ | 0.9674 ✔ |
\(\:k=\frac{\sum\:_{i=0}^{n}({d}_{i}\times\:{y}_{i})}{\sum\:_{i=0}^{n}{y}_{i}^{2}}\) | \(\:0.85<k<1.15\) | 1.0547 ✔ | 1.0792 ✔ | 1.0415 ✔ | 1.0399 ✔ |
\(\:k{\prime\:}=\frac{\sum\:_{i=0}^{n}({d}_{i}\times\:{y}_{i})}{\sum\:_{i=0}^{n}{d}_{i}^{2}}\) | \(\:0.85<k{\prime\:}<1.15\) | 0.9359 ✔ | 0.8945 ✔ | 0.9415 ✔ | 0.9408 ✔ |
\(\:{R}_{o}^{{\prime\:}2}=1-\left(\frac{\sum\:_{i=1}^{n}{y}_{i}^{2}{\left(1-k\right)}^{2}}{\sum\:_{i=1}^{n}({y}_{i}-\stackrel{-}{y})}\right)\) | Should be close to 1 | 0.9903 ✔ | 0.9811 ✔ | 0.9949 ✔ | 0.9953 ✔ |
\(\:{R{\prime\:}{\prime\:}}_{o}^{2}=1-\left(\frac{\sum\:_{i=1}^{n}{d}_{i}^{2}{\left(1-{k}^{{\prime\:}}\right)}^{2}}{\sum\:_{i=1}^{n}({d}_{i}-\stackrel{-}{d})}\right)\) | Should be close to 1 | 0.9867 ✔ | 0.9639 ✔ | 0.9889 ✔ | 0.9886 ✔ |
\(\:{R}_{m}={R}^{2}\times\:\left(1-\sqrt{\left|{R}^{2}-{R}_{o}^{2}\right|}\right)\) | \(\:{R}_{m}>0.5\) | 0.7874 ✔ | 0.6335 ✔ | 0.7259 ✔ | 0.7079 ✔ |
\(\:m=\frac{{R}^{2}-{R}_{o}^{2}}{{R}^{2}}\) | \(\:\left|m\right|<0.1\) | −0.0332 | −0.0956 | −0.0559 | −0.0634 |
\(\:n=\frac{{R}^{2}-{R{\prime\:}}_{o}^{2}}{{R}^{2}}\) | \(\:\left|n\right|<0.1\) | −0.0295 ✔ | −0.0765 ✔ | −0.0496 ✔ | −0.0563 ✔ |
Number of conditions met | 8 | 8 | 8 | 8 | |