Table 2 Test results for predictive models of neonatal risk of death.
Country | Model | Algorithm | Support | Positive Outcome | CI AUC-ROC | CI Recall | Accuracy | Precision | Specificity | F1-score |
|---|---|---|---|---|---|---|---|---|---|---|
General1 | General | LGBM Tuned | 134,007 | 2,985 | 0.816 [0.807, 0.825] | 0.220 [0.205, 0.235] | 0.980 | 0.642 | 0.997 | 0.328 |
General1 | Largest train size | LGBM | 134,007 | 2,985 | 0.76 [0.750, 0.771] | 0.998 [0.174, 0.201] | 0.980 | 0.657 | 0.188 | 0.292 |
DRC | General | LGBM Tuned | 18,568 | 445 | 0.797 [0.770, 0.825] | 0.245 [0.207, 0.286] | 0.980 | 0.752 | 0.998 | 0.369 |
DRC | Country-specific | XGB Tuned | 18,568 | 445 | 0.793 [0.765, 0.819] | 0.252 [0.215, 0.293] | 0.98 | 0.762 | 0.998 | 0.378 |
DRC | Largest train size | LGBM | 18,568 | 445 | 0.749 [0.722, 0.778] | 0.997 [0.200, 0.277] | 0.979 | 0.679 | 0.238 | 0.353 |
Guatemala | General | LGBM Tuned | 25,167 | 539 | 0.795 [0.772, 0.819] | 0.232 [0.198, 0.269] | 0.982 | 0.772 | 0.998 | 0.357 |
Guatemala | Country-specific | LGBM Tuned | 25,167 | 539 | 0.796 [0.774, 0.82] | 0.232 [0.197, 0.269] | 0.981 | 0.706 | 0.998 | 0.349 |
Guatemala | Largest train size | LGBM | 25,167 | 539 | 0.71 [0.681, 0.738] | 0.999 [0.123, 0.184] | 0.981 | 0.783 | 0.154 | 0.257 |
Zambia | General | LGBM Tuned | 18,677 | 215 | 0.785 [0.745, 0.826] | 0.265 [0.206, 0.325] | 0.990 | 0.679 | 0.999 | 0.381 |
Zambia | Country-specific | LGBM Tuned | 18,677 | 215 | 0.801 [0.761, 0.839] | 0.237 [0.181, 0.297] | 0.990 | 0.630 | 0.998 | 0.345 |
Zambia | Largest train size | LGBM | 18,677 | 215 | 0.744 [0.701, 0.789] | 0.998 [0.176, 0.291] | 0.989 | 0.575 | 0.233 | 0.331 |
India-Belagavi | General | LGBM Tuned | 16,070 | 313 | 0.784 [0.751, 0.814] | 0.278 [0.224, 0.328] | 0.984 | 0.725 | 0.998 | 0.402 |
India-Belagavi | Country-specific | LGBM | 16,070 | 313 | 0.781 [0.75, 0.811] | 0.259 [0.206, 0.308] | 0.983 | 0.692 | 0.998 | 0.377 |
India-Belagavi | Largest train size | LGBM | 16,070 | 313 | 0.781 [0.750, 0.811] | 0.998 [0.206, 0.308] | 0.983 | 0.692 | 0.259 | 0.377 |
India-Nagpur | General | LGBM Tuned | 18,278 | 323 | 0.812 [0.781, 0.84] | 0.232 [0.190, 0.277] | 0.983 | 0.568 | 0.997 | 0.330 |
India-Nagpur | Country-specific | XGB Tuned | 18,278 | 323 | 0.808 [0.778, 0.836] | 0.186 [0.146, 0.229] | 0.983 | 0.571 | 0.997 | 0.28 |
India-Nagpur | Largest train size | LGBM | 18,278 | 323 | 0.804 [0.774, 0.833] | 0.996 [0.171, 0.258] | 0.982 | 0.504 | 0.214 | 0.300 |
Pakistan | General | LGBM Tuned | 16,521 | 838 | 0.772 [0.752, 0.790] | 0.185 [0.157, 0.212] | 0.950 | 0.515 | 0.991 | 0.272 |
Pakistan | Country-specific | LGBM Tuned | 16,521 | 838 | 0.770 [0.750, 0.788] | 0.189 [0.161, 0.215] | 0.950 | 0.506 | 0.990 | 0.275 |
Pakistan | Largest train size | LGBM | 16,521 | 838 | 0.746 [0.726, 0.766] | 0.997 [0.122, 0.172] | 0.954 | 0.719 | 0.147 | 0.244 |
Kenya | General | LGBM Tuned | 19,637 | 280 | 0.808 [0.777, 0.839] | 0.161 [0.119, 0.204] | 0.987 | 0.634 | 0.999 | 0.256 |
Kenya | Country-specific | XGB Tuned | 19,637 | 280 | 0.805 [0.774, 0.836] | 0.139 [0.102, 0.179] | 0.986 | 0.557 | 0.998 | 0.223 |
Kenya | Largest train size | LGBM | 19,637 | 280 | 0.764 [0.730, 0.797] | 0.998 [0.109, 0.190] | 0.986 | 0.583 | 0.150 | 0.239 |
Bangladesh2 | General | LGBM Tuned | 1,089 | 32 | 0.854 [0.779, 0.920] | 0.156 [0.038, 0.306] | 0.971 | 0.500 | 0.995 | 0.238 |
Bangladesh2 | Largest train size | LGBM | 1,089 | 32 | 0.793 [0.691, 0.896] | 0.999 [0.062, 0.334] | 0.975 | 0.857 | 0.188 | 0.308 |