Table 8 Performance comparison with state-of-art methods.
Methods | Swarm size | Metrics | ||||||
|---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | Specificity | F-score | Errorrate | Time taken (S) | ||
K-NN | 10 | 0.72 | 0.73 | 0.70 | 0.75 | 0.72 | 0.28 | 39 |
15 | 0.68 | 0.69 | 0.67 | 0.71 | 0.68 | 0.32 | 42 | |
20 | 0.70 | 0.71 | 0.68 | 0.72 | 0.70 | 0.30 | 48 | |
25 | 0.68 | 0.69 | 0.67 | 0.70 | 0.68 | 0.32 | 55 | |
30 | 0.72 | 0.73 | 0.70 | 0.75 | 0.72 | 0.28 | 61 | |
Average | 0.70 | 0.71 | 0.68 | 0.72 | 0.70 | 0.30 | 49 | |
NN | 10 | 0.86 | 0.85 | 0.87 | 0.83 | 0.86 | 0.14 | 50 |
15 | 0.88 | 0.87 | 0.89 | 0.86 | 0.88 | 0.12 | 62 | |
20 | 0.89 | 0.88 | 0.90 | 0.88 | 0.89 | 0.11 | 73 | |
25 | 0.88 | 0.87 | 0.89 | 0.87 | 0.88 | 0.12 | 78 | |
30 | 0.89 | 0.88 | 0.90 | 0.88 | 0.89 | 0.11 | 88 | |
Average | 0.88 | 0.87 | 0.89 | 0.86 | 0.88 | 0.12 | 72 | |
SVM | 10 | 0.74 | 0.76 | 0.70 | 0.78 | 0.73 | 0.26 | 28 |
15 | 0.72 | 0.74 | 0.67 | 0.76 | 0.70 | 0.28 | 32 | |
20 | 0.71 | 0.73 | 0.66 | 0.75 | 0.69 | 0.29 | 35 | |
25 | 0.69 | 0.71 | 0.64 | 0.73 | 0.67 | 0.31 | 38 | |
30 | 0.70 | 0.72 | 0.65 | 0.74 | 0.68 | 0.30 | 41 | |
Average | 0.71 | 0.73 | 0.66 | 0.75 | 0.69 | 0.28 | 57 | |
DT | 10 | 0.76 | 0.78 | 0.72 | 0.80 | 0.75 | 0.24 | 21 |
15 | 0.74 | 0.76 | 0.69 | 0.78 | 0.72 | 0.26 | 25 | |
20 | 0.72 | 0.74 | 0.68 | 0.76 | 0.71 | 0.28 | 29 | |
25 | 0.70 | 0.72 | 0.66 | 0.74 | 0.68 | 0.30 | 32 | |
30 | 0.71 | 0.73 | 0.67 | 0.75 | 0.70 | 0.29 | 35 | |
Average | 0.72 | 0.74 | 0.68 | 0.7648 | 0.71 | 0.27 | 32 | |
NB | 10 | 0.78 | 0.80 | 0.74 | 0.82 | 0.77 | 0.22 | 6 |
15 | 0.75 | 0.78 | 0.71 | 0.80 | 0.74 | 0.25 | 9 | |
20 | 0.73 | 0.75 | 0.69 | 0.77 | 0.72 | 0.27 | 23 | |
25 | 0.71 | 0.72 | 0.67 | 0.75 | 0.70 | 0.29 | 26 | |
30 | 0.72 | 0.74 | 0.69 | 0.75 | 0.71 | 0.28 | 21 | |
Average | 0.74 | 0.76 | 0.70 | 0.78 | 0.73 | 0.27 | 19 | |
DT-SVM | 10 | 0.86 | 0.90 | 0.82 | 0.90 | 0.85 | 0.14 | 48 |
15 | 0.85 | 0.86 | 0.83 | 0.86 | 0.84 | 0.15 | 81 | |
20 | 0.83 | 0.86 | 0.79 | 0.87 | 0.82 | 0.17 | 86 | |
25 | 0.77 | 0.78 | 0.74 | 0.80 | 0.76 | 0.23 | 108 | |
30 | 0.78 | 0.79 | 0.76 | 0.80 | 0.78 | 0.22 | 136 | |
Average | 0.82 | 0.84 | 0.79 | 0.85 | 0.81 | 0.19 | 90 | |
NB-KNN | 10 | 0.80 | 0.83 | 0.76 | 0.84 | 0.80 | 0.20 | 158 |
15 | 0.79 | 0.81 | 0.74 | 0.83 | 0.79 | 0.23 | 180 | |
20 | 0.77 | 0.80 | 0.74 | 0.81 | 0.76 | 0.23 | 198 | |
25 | 0.73 | 0.74 | 0.69 | 0.76 | 0.71 | 0.28 | 218 | |
30 | 0.74 | 0.75 | 0.70 | 0.75 | 0.73 | 0.26 | 242 | |
Average | 0.76 | 0.79 | 0.73 | 0.80 | 0.75 | 0.24 | 199 | |
DT-SVM-KNN | 10 | 0.82 | 0.85 | 0.78 | 0.86 | 0.87 | 0.18 | 83 |
15 | 0.81 | 0.85 | 0.77 | 0.86 | 0.80 | 0.19 | 102 | |
20 | 0.79 | 0.82 | 0.75 | 0.84 | 0.78 | 0.21 | 115 | |
25 | 0.73 | 0.75 | 0.70 | 0.77 | 0.72 | 0.27 | 140 | |
30 | 0.75 | 0.76 | 0.72 | 0.78 | 0.74 | 0.25 | 156 | |
Average | 0.79 | 0.81 | 0.75 | 0.82 | 0.78 | 0.21 | 119 | |
NB-NN-DT | 10 | 0.90 | 0.92 | 0.86 | 0.94 | 0.90 | 0.10 | 24 |
15 | 0.90 | 0.92 | 0.89 | 0.92 | 0.90 | 0.09 | 35 | |
20 | 0.89 | 0.91 | 0.87 | 0.91 | 0.89 | 0.11 | 46 | |
25 | 0.83 | 0.84 | 0.82 | 0.84 | 0.83 | 0.17 | 56 | |
30 | 0.83 | 0.84 | 0.81 | 0.84 | 0.83 | 0.17 | 65 | |
Average | 0.87 | 0.89 | 0.85 | 0.89 | 0.87 | 0.14 | 45 | |
SVM-NB-KNN | 10 | 0.88 | 0.9130 | 0.8400 | 0.92 | 0.88 | 0.12 | 30 |
15 | 0.88 | 0.8866 | 0.8600 | 0.89 | 0.88 | 0.12 | 49 | |
20 | 0.86 | 0.8913 | 0.8200 | 0.90 | 0.86 | 0.14 | 68 | |
25 | 0.79 | 0.8010 | 0.7650 | 0.81 | 0.79 | 0.21 | 91 | |
30 | 0.80 | 0.8099 | 0.7840 | 0.82 | 0.80 | 0.20 | 112 | |
Average | 0.84 | 0.86 | 0.82 | 0.87 | 0.83 | 0.15 | 70 | |
NueroEvoClass | 10 | 0.95 | 0.95 | 0.94 | 0.96 | 0.94 | 0.05 | 13 |
15 | 0.93 | 0.94 | 0.92 | 0.95 | 0.93 | 0.06 | 16 | |
20 | 0.92 | 0.93 | 0.90 | 0.94 | 0.92 | 0.07 | 28 | |
25 | 0.88 | 0.89 | 0.86 | 0.87 | 0.86 | 0.13 | 27 | |
30 | 0.89 | 0.86 | 0.85 | 0.86 | 0.86 | 0.13 | 39 | |
Average | 0.92 | 0.91 | 0.89 | 0.91 | 0.90 | 0.09 | 75 | |