Table 5 Classification accuracy (%) on the VisDA-2017 dataset for various domain adaptation methods. The best results are highlighted in bold.

From: Multi-view affinity-based projection alignment for unsupervised domain adaptation via locality preserving optimization

Method

Backbone

airplane

bicycle

bus

car

horse

knife

motorcycle

person

plant

skateboard

train

truck

AVG

Baseline

ResNet-101

55.1

53.3

61.9

59.1

80.6

17.9

79.7

31.2

81.0

26.5

73.5

8.5

52.36

CGDM 21

93.4

82.7

73.2

68.4

92.9

94.5

88.7

82.1

93.4

82.5

86.8

49.2

82.32

SDAT 39

95.8

85.5

76.9

69.0

93.5

97.4

88.5

78.2

93.1

91.6

86.3

55.3

84.26

CLIP 14

98.2

83.9

90.5

73.5

97.2

84.0

95.3

65.7

79.4

89.9

91.8

63.3

84.39

Ours

96.7

83.9

80.9

76.2

97.0

98.1

90.0

84.0

96.5

94.7

88.7

57.5

87.01

Baseline

ViT

98.2

73.0

82.5

62.0

97.3

63.5

96.5

29.8

68.7

86.7

96.7

23.7

73.22

TVT 24

92.9

85.6

77.5

60.5

93.6

98.2

89.4

76.4

93.6

92.0

91.7

55.7

83.92

PMTrans 23

98.9

93.7

84.5

73.3

99.0

98.0

96.2

67.8

94.2

98.4

96.6

49.0

87.47

CLIP 14

99.3

91.7

93.9

74.3

98.4

94.3

90.3

78.2

78.3

97.3

95.2

64.8

88.00

SDAT 39

98.4

90.9

85.4

82.1

98.5

97.6

96.3

86.1

96.2

96.7

92.9

56.8

89.83

CMKD 13

99.4

94.6

91.5

78.9

98.7

97.3

93.3

81.3

91.8

97.9

96.9

61.7

90.28

Ours

98.4

94.8

87.2

88.7

100.0

100.0

97.6

89.0

97.8

98.3

92.0

68.5

92.68