Table 8 M&C on high carbon oil energy intensity by specified parameters in Guizhou from 2021 to 2030 (10,000 tons of standard coal/100 million yuan, base period was 2011).

From: Management and control decision of energy intensity in logistics industry under the background of dual carbon strategy in China

Year

Exponential model(M1)

\(y_{t} = y_{0} e^{at}\), a = ln(0.865)/4

\(y_{t} = y_{0} \lambda^{t}\),\(\lambda = 0.865^{1/4}\)

Difference model(M2)

\(y_{t} = (1{ - }\phi )^{{\text{t}}} (y_{0} - \mathop y\limits^{ \wedge } ) + \mathop y\limits^{ \wedge }\), \(\mathop y\limits^{ \wedge }\) = 0.5*\(y_{0}\),\(\phi = 1 - 0.73^{1/4}\)

Linear model(M3)

\(y_{t} = y_{0} + bt\)

b = −0.135*\(y_{0}\)/4;

2021

2.631334

2.631334

2.631334

2022

2.537640

2.531788

2.542526

2023

2.447282

2.439773

2.453719

2024

2.360142

2.354721

2.364911

2025

2.276104

2.276104

2.276104

2026

2.195059

2.203435

2.187296

2027

2.116899

2.136265

2.098489

2028

2.041522

2.074176

2.009681

2029

1.968830

2.016786

1.920874

2030

1.898726

1.963738

1.832066

  1. Note: The two exponential models export the same results, the parameters in Table 2 are used as the specified parameters, which are calculated from the decline of China’s energy intensity per unit GDP as the specified parameters, and a small part of the specified parameters are slightly adjusted to measure the effect in Table 8. Furthermore, in the difference model, a more smaller long-term desire value is set as \(\mathop y\limits^{ \wedge }\) = 0.5*\(y_{0}\), \(\phi = 1 - 0.73^{1/4}\).