Table 10 Performance comparison of different optimizers and learning rate configurations on standard images and occluded images.

From: Enhancing occluded and standard bird object recognition using fuzzy-based ensembled computer vision approach with convolutional neural network

S. No.

Model Name

Ablation components

Standard bird objects

Occluded bird objects

Optimizer

Learning Rate

A

(%)

FS

(%)

A

(%)

FS

(%)

1

DenseNet121

ADAM

1e-3

90.38

90.39

81.01

77.37

2

DenseNet121

ADAM

1e-4

94.8

94.82

89.24

90.01

3

DenseNet121

ADAM

1e-5

93.3

93.41

86.08

83.54

4

DenseNet121

RMSProp

1e-3

75.35

76.58

60.57

60.24

5

DenseNet121

RMSProp

1e-4

81.25

81.47

70.89

69.78

6

DenseNet121

RMSProp

1e-5

95.07

95.13

91.77

91.17

7

DenseNet169

ADAM

1e-3

88.61

88.86

79.75

78.47

8

DenseNet169

ADAM

1e-4

94.65

94.71

89.24

88.75

9

DenseNet169

ADAM

1e-5

93.49

93.52

87.97

87.56

10

DenseNet169

RMSProp

1e-3

75.08

75.86

60.87

59.66

11

DenseNet169

RMSProp

1e-4

81.52

81.78

70.89

71.77

12

DenseNet169

RMSProp

1e-5

94.96

94.94

92.14

90.16

13

ResNet101V2

ADAM

1e-3

89.92

90.01

83.54

83.57

14

ResNet101V2

ADAM

1e-4

95.65

95.7

91.41

91.59

15

ResNet101V2

ADAM

1e-5

95.91

95.62

91.77

91.85

16

ResNet101V2

RMSProp

1e-3

74.58

75.91

61.87

61.42

17

ResNet101V2

RMSProp

1e-4

82.41

82.66

62.66

63.07

18

ResNet101V2

RMSProp

1e-5

96.04

96.02

91.41

91.59

  1. A: Accuracy, FS: F1-Score.