Table 6 Performance comparison of different ensemble approaches on the different complex test datasets.
Approach | TD1 | TD2 | TD3 | TD4 | ||||
|---|---|---|---|---|---|---|---|---|
A (%) | FS (%) | A (%) | FS (%) | A (%) | FS (%) | A (%) | FS (%) | |
Simple Ensemble Learning | 97.27 | 97.29 | 97.01 | 96.89 | 90.30 | 91.72 | 96.96 | 96.88 |
Fuzzy-Based Ensemble Learning | 98.25 | 98.27 | 97.97 | 97.85 | 90.91 | 92.28 | 98.03 | 98.13 |
Random Forest Ensemble Learning | 96.36 | 96.12 | 90.00 | 88.80 | 90.91 | 90.81 | 93.11 | 93.05 |
XG-Boost Ensemble Learning | 80.00 | 77.65 | 69.09 | 66.38 | 73.33 | 74.07 | 87.68 | 86.91 |