Table 2 Components and descriptions for DNN and CNN models with Unencoded and Encoded features.
Model type | Component | Description |
|---|---|---|
DNN (Unencoded) | Input layer | Shape: (10, 10) |
Flatten layer | Flatten the input to a 1D array | |
Hidden layers | Dense layer 1: Units = 32, Activation = ReLU | |
Dense layer 2: Units = 16, Activation = ReLU | ||
Dense layer 3: Units = 8, Activation = ReLU | ||
Output layer | Units: 1, Activation: Linear | |
Training configuration | Loss Function: (MSE) | |
Optimizer: Adam | ||
Learning Rate: 0.005 | ||
Metrics: (RMSE) | ||
Epochs: 100 | ||
CNN (Unencoded) | Input layer | Input Shape (10, 10) |
Convolution layer | Filters: 32 | |
Kernel Size: 2 | ||
Activation: ReLU | ||
Flattening layer | Flattens the input data | |
Hidden layers | Dense Layer 1: Units = 16, Activation = ReLU | |
Dense Layer 2: Units = 8, Activation = ReLU | ||
Output layer | Units = 1, Activation = Linear | |
Training configuration | Loss Function: (MSE) | |
Optimizer: Adam | ||
Learning Rate: 0.005 | ||
Metrics: (RMSE) | ||
DNN (Encoded) | Input layer | Shape: (10, 7) |
Flatten layer | Flatten the input to a 1D array | |
Hidden layers | Dense layer 1: Units = 32, Activation = ReLU | |
Dense layer 2: Units = 16, Activation = ReLU | ||
Dense layer 3: Units = 8, Activation = ReLU | ||
Output layer | Units: 1, Activation: Linear | |
Training configuration | Loss Function: (MSE) | |
Optimizer: Adam | ||
Learning Rate: 0.005 | ||
Metrics: (RMSE) | ||
Epochs: 100 | ||
CNN (Encoded) | Input layer | Input Shape (10, 7) |
Convolution layer | Filters: 32 | |
Kernel Size: 2 | ||
Activation: ReLU | ||
Flattening layer | Flattens the input data | |
Hidden layers | Dense Layer 1: Units = 16, Activation = ReLU | |
Dense Layer 2: Units = 8, Activation = ReLU | ||
Output layer | Units = 1, Activation = Linear | |
Training configuration | Loss Function: (MSE) | |
Optimizer: Adam | ||
Learning Rate: 0.005 | ||
Metrics: (RMSE) |