Table 9 Comparison of R2 values for PM2.5 prediction across stations using deep learning models with unencoded and encoded features.

From: Deep learning framework for hourly air pollutants forecasting using encoding cyclical features across multiple monitoring sites in Beijing

 

Unencoded features

Encoded features

DNN

ANN

CNN

LSTM

DNN

ANN

CNN

LSTM

Aotizhongxin

0.948

0.869

0.948

0.937

0.948

0.866

0.948

0.940

Changping

0.943

0.860

0.943

0.920

0.943

0.817

0.943

0.933

Dongsi

0.952

0.880

0.953

0.938

0.954

0.806

0.953

0.939

Guanyuan

0.955

0.935

0.956

0.944

0.956

0.841

0.956

0.947

Huairou

0.940

0.889

0.940

0.940

0.939

0.806

0.941

0.933

Nongzhanguan

0.961

0.783

0.961

0.944

0.962

0.828

0.961

0.928

Shunyi

0.952

0.867

0.952

0.936

0.953

0.819

0.951

0.938

Tiantan

0.959

0.878

0.959

0.942

0.960

0.850

0.961

0.944

Wanliu

0.957

0.893

0.957

0.940

0.957

0.826

0.957

0.947

Wanshouxigong

0.948

0.869

0.948

0.937

0.948

0.866

0.948

0.940