Table 9 Comparison of R2 values for PM2.5 prediction across stations using deep learning models with unencoded and encoded features.
Unencoded features | Encoded features | |||||||
|---|---|---|---|---|---|---|---|---|
DNN | ANN | CNN | LSTM | DNN | ANN | CNN | LSTM | |
Aotizhongxin | 0.948 | 0.869 | 0.948 | 0.937 | 0.948 | 0.866 | 0.948 | 0.940 |
Changping | 0.943 | 0.860 | 0.943 | 0.920 | 0.943 | 0.817 | 0.943 | 0.933 |
Dongsi | 0.952 | 0.880 | 0.953 | 0.938 | 0.954 | 0.806 | 0.953 | 0.939 |
Guanyuan | 0.955 | 0.935 | 0.956 | 0.944 | 0.956 | 0.841 | 0.956 | 0.947 |
Huairou | 0.940 | 0.889 | 0.940 | 0.940 | 0.939 | 0.806 | 0.941 | 0.933 |
Nongzhanguan | 0.961 | 0.783 | 0.961 | 0.944 | 0.962 | 0.828 | 0.961 | 0.928 |
Shunyi | 0.952 | 0.867 | 0.952 | 0.936 | 0.953 | 0.819 | 0.951 | 0.938 |
Tiantan | 0.959 | 0.878 | 0.959 | 0.942 | 0.960 | 0.850 | 0.961 | 0.944 |
Wanliu | 0.957 | 0.893 | 0.957 | 0.940 | 0.957 | 0.826 | 0.957 | 0.947 |
Wanshouxigong | 0.948 | 0.869 | 0.948 | 0.937 | 0.948 | 0.866 | 0.948 | 0.940 |