Table 1 AI modeling studies on RCC.

From: Predicting compressive and splitting tensile strength of high volume fly ash roller compacted concrete using ANN and ANN-biogeography based optimization models

References

Products and wastes used in RCC mixtures

AI technique

Dataset

The best model for CS (R value)

The best model for STS (R value)

22

RAP & crumb rubber

*ANN

*GA-ANN

56

GA&ANN (0.945)

23

Rice husk ash

*ANFIS

9

ANFIS (0.9986)

24

Macro-synthetic fibre

*ANOVA

15

ANOVA (0.9647)

14

High-volume fly ash, crumb rubber & nano silica

*ANOVA

16

ANOVA (0.9803)

ANOVA (0.9327)

25

-

*GEP (1,2–3)

235

GEP 1 (0.901)

21

-

*RF *M5r *M5p

*CHAID

929

RF (0.986)

RF (0.991)

17

EAF slag & fly ash

*MRA

*ANN

*FL

53

FL (0.9817)

26

-

*ANN

*PSO-ANN

500

PSO-ANN (0.922)

27

Crumb rubber & nano silica

*ANOVA

68

ANOVA (0.9849)

28

-

*ANN *RF

*MARS

*MARS-GOA

*ELM *M5p

947

MARS-GOA (0.9327)

MARS-GOA (0.9322)

29

RAP

*LM-ANN

*BR-ANN

*SCG-ANN

*2HL-ANN

83

ANN-BR (0.985)

30

*PSO-LightGBM

*SVR

*LM-ANN

408

PSO-LightGBM (0.9808)

31

Color pigment

*ML *GB

*RF *SVM

*ANN *BGG

239

ANN (0.9808)