Table 5 Some known QEC MDS codes with minimum distance \(d>\frac{q+1}{2}\).

From: Some new QEC MDS codes with large minimum distance

Code length

Constraints

Minimum distances

References

\(\frac{q^2-1}{2}\)

q odd

\(2\le d\le q\)

22

\(\lambda (q+1)\)

\(\lambda\) odd, \(\lambda \mid (q-1)\)

\(2 \le d \le \frac{q+1}{2}+\lambda\)

22

\(2\lambda (q+1)\)

\(q \equiv 1 (\textrm{mod}~4)\), \(\lambda\) odd, \(\lambda \mid (q-1)\)

\(2 \le d \le \frac{q+1}{2}+2 \lambda\)

22

\(\lambda (q-1)\)

\(\lambda = \frac{q+1 }{r}\) with even r

\(2 \le d \le \frac{q+1}{2}+ \lambda -1\)

22,24

\(\lambda (q-1)\)

\(\lambda = \frac{q+1 }{r}\) with odd r

\(2 \le d \le \frac{q+1}{2}+ \frac{\lambda }{2}-1\)

24

\(\frac{q^2-1}{h}\)

q odd, \(h \mid (q+1)\), \(h \in {{3,5,7}}\)

\(2 \le d \le \frac{(q+1)(h+1)}{2h}-1\)

23

\(2t(q-1)\)

\(8 \mid (q+1)\), \(t \mid (q+1)\)

\(2 \le d \le 6t+1\)

23

\(3(q-1)\)

\(3^{2} \mid (q+1)\) with odd q

\(2 \le d \le \frac{q+5}{2}\)

23

\((2t+1)\frac{q^{2}-1}{2s+1}\)

\((2s+1) \mid (q+1)\), \(1 \le t \le s\)

\(2 \le d \le (s+t+1)\frac{q-1}{2s+1}-1\)

27

\(2t \frac{q^{2}-1}{2s+1}\)

\((2s+1) \mid (q+1)\), \(1 \le t \le s-1\)

\(2 \le d \le (s+t+1)\frac{q-1}{2s+1}-1\)

27,29

\(2t \frac{q^{2}-1}{2s}\)

\(2s \mid (q+1)\), \(1 \le t \le s\)

\(2 \le d \le (s+t) \frac{q-1}{2s}-1\)

28,29

\(r \frac{q^{2}-1}{2s}\)

\(2s \mid (q+1)\), \(1 \le r \le 2s\)

\(2 \le d \le (s+1) \frac{q-1}{2s}\)

28

\(r \frac{q^{2}-1}{s}\)

\(s \mid (q-1)\), \(1 \le r \le s\)

\(2 \le d \le r \frac{q-1}{s}\)

29,32

\((2t+1)\frac{q^{2}-1}{2s}\)

\(2s \mid (q-1)\), \(1 \le t \le 2s\)

\(2 \le d \le (s+t) \frac{q-1}{2s}-1\)

32

\(\frac{q^2-1}{4}+\frac{q^2-1}{h}\)

\(\frac{2(q-1)}{h}=2\tau +1\)

\(2\le d \le \frac{q-1}{2}+\tau\)

33

\(\frac{q^2-1}{4}+\frac{2(q^2-1)}{h}\)

\(\frac{2(q-1)}{h}=2\tau +1\), \((h\ne 4)\)

\(2\le d \le \frac{q-1}{2}+2\tau +1\)

33

\(m(q-1)\)

\(1 \le m \le q\)

\(2 \le d \le \lfloor \frac{mq-1}{q+1}\rfloor +1\)

37

\(\frac{2(r_1+1)r_2(q^2-1)}{h}\)

\(q\equiv 3~(\text {mod}~4)\), \(h=h_1h_2\ge 9\), \(h_1\mid \frac{q-1}{2}\), \(h_2\mid (q+1)\), \(r_1\le h_1-1\), odd \(h_2>2r_2\)

\(2 \le d \le \text {max}\{\frac{(r_1-1)(q-1)}{2h_1},\) \(\frac{2(r_2-1)(q+1)}{h_2}\}+2\)

35

\(\frac{(5t+q-1)(q+1)}{9}\)

\(3\mid (q+1)\),\(t\mid (q+1)\),\(3\mid (t-1)\)

\(2 \le d \le \frac{q+2t-1}{3} +1\)

36

\(\frac{(7t+q-1)(q+1)}{9}\)

\(3\mid (q+1)\),\(t\mid (q+1)\),\(3\mid (t+1)\)

\(2 \le d \le \frac{q+1}{3}+t\)

36

\(s(q+1)\)

\(1 \le s \le q-1\)

\(2 \le d \le s\)

37

\((\mu +1)\frac{q^2-1}{\gamma }\)

\(q\equiv -1~(\text {mod}~4)\), \(\gamma \mid 2(q-1)\) and \(\gamma \nmid (q-1)\), \(0\le \mu \le \frac{\gamma }{4}-1\)

\(2\le d \le (\frac{\gamma +4}{8}+\mu )\frac{2(q-1)}{\gamma }+1\)

Theorem 8

\((2\mu +1)\frac{q^2-1}{\gamma }\)

\(\gamma \equiv 2(\text {mod 4})\), \(\gamma \mid (q+1)\), \(0\le \mu \le \frac{\gamma -2}{4}\)

\(2 \le d \le \frac{q+1}{2}+(\mu +1)\frac{q+1}{\gamma }-1\)

Theorem 12