Table 1 Quantitative comparison of state-of-the-art methods.

From: Multimodal deep learning for cephalometric landmark detection and treatment prediction

Category

Method

Year

Modality

Dataset size

Mean detection error (mm)

2 mm success Rate (%)

Treatment prediction accuracy (%)

Traditional

ASM25

1995

Ceph

247

3.82

51.2

N/A

Traditional

AAM25

1995

Ceph

247

3.44

54.8

N/A

Traditional

RFRV13

2015

Ceph

400

2.51

68.6

N/A

Deep learning

U-Net89

2015

Ceph

400

2.35

72.1

N/A

Deep learning

ResNet-based90

2020

Ceph

400

1.87

78.3

N/A

Deep learning

CephaNet33

2020

Ceph

735

1.58

85.2

N/A

Deep learning

AGNET93

2022

Ceph + CBCT

250

1.39

88.9

N/A

Treatment prediction

Conventional95

2016

Ceph

320

N/A

N/A

69.2

Treatment prediction

CNN-based107

2021

Ceph

450

N/A

N/A

73.5

Treatment prediction

3D-based106

2020

CBCT

215

N/A

N/A

78.2