Table 5 Comparative outcomes of MOBCF-ADDLM technique with existing approaches19,36]– [37.

From: Blockchain enhanced distributed denial of service detection in IoT using deep learning and evolutionary computation

Technique

\(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\)

\(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\)

\(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\)

\(\:{\varvec{F}}_{\varvec{s}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\)

MOBCF-ADDLM

99.22

98.38

95.83

96.98

LR

98.72

96.67

93.98

95.71

XGBoost

97.87

94.96

92.90

95.83

HGBClassifier

97.76

95.66

94.36

95.34

H3SC-DLIDS

99.07

96.68

95.20

96.06

AE-MLP Method

98.21

95.93

93.34

95.15

XGBoost Method

97.12

94.31

92.15

95.08

RF

97.02

95.00

93.72

94.59

DT

95.24

92.46

92.54

93.29

Bi-LSTM

97.43

95.83

94.93

95.55

Hybrid IDS

96.92

94.80

90.26

92.89