Table 4 Comparative outcomes of GRHIP-EDLIBWO methodology with existing models20,21,36,37,38.

From: Gesture recognition for hearing impaired people using an ensemble of deep learning models with improving beluga whale optimization-based hyperparameter tuning

Methodology

\(Acc{u}_{y}\)

\(Pre{c}_{n}\)

\(Rec{a}_{l}\)

\({F1}_{score}\)

2DCNN and LSTM-LMS

89.50

82.67

83.09

81.28

CNN-2layer LSTM

94.00

76.25

73.91

86.63

3DCNN-SL-GCN

98.00

78.61

74.36

76.15

CNN + RNN

75.11

69.46

71.13

70.21

Pose Estimation + LSTM

94.99

79.90

86.87

83.02

LiST-LFCISLT

96.92

84.91

78.35

80.32

ANN Algorithm

89.45

74.44

86.00

81.80

MLP Model

90.04

76.97

84.16

73.29

hDNN-SLR

97.10

74.99

81.69

75.55

Bi-LSTM

92.84

81.55

82.01

84.09

HNN

91.58

75.78

85.70

85.55

VA-E

92.05

73.00

85.54

78.21

GRHIP-EDLIBWO

98.72

87.37

87.14

87.04