Table 3 Classification performance of features combination models.

From: Automated classification of chondroid tumor using 3D U-Net and radiomics with deep features

Classifiers

Accuracy (95% CI)

Weighted Kappa

AUC

Model 1: radiomics-only features model

 Random forest

0.75 (0.75–0.82)

0.57

0.75

 Gradient boosting

0.68 (0.68–0.75)

0.42

0.68

 XGBoost

0.75 (0.75–0.82)

0.62

0.75

 LightGBM

0.69 (0.68–0.75)

0.42

0.68

 CatBoost

0.81 (0.81–0.87)

0.69

0.81

Model 2: deep learning-only features model

 Random forest

0.74 (0.74–0.80)

0.52

0.63

 Gradient boosting

0.78 (0.78–0.84)

0.61

0.74

 XGBoost

0.78 (0.78–0.84)

0.58

0.74

 LightGBM

0.81 (0.81–0.87)

0.65

0.77

 CatBoost

0.84 (0.84–0.89)

0.71

0.79

Model 3: radiomics + deep learning model

 Random forest

0.81 (0.81–0.86)

0.76

0.71

 Gradient boosting

0.84 (0.84–0.89)

0.82

0.80

 XGBoost

0.87 (0.87–0.91)

0.84

0.83

 LightGBM

0.83 (0.83–0.87)

0.79

0.85

 CatBoost

0.87 (0.86–0.92)

0.84

0.85

Model 4: radiomics + deep learning + clinical model

 Random forest

0.80 (0.80–0.84)

0.64

0.73

 Gradient boosting

0.83 (0.83–0.86)

0.70

0.85

 XGBoost

0.80 (0.80–0.84)

0.66

0.83

 LightGBM

0.81 (0.81–0.85)

0.69

0.86

 CatBoost

0.89 (0.88–0.92)

0.78

0.87

Model 5: Radiomics + deep roi + clinical model

 Random forest

0.88 (0.87–0.90)

0.77

0.75

 Gradient boosting

0.89 (0.88–0.91)

0.80

0.88

 XGBoost

0.89 (0.88–0.92)

0.81

0.89

 LightGBM

0.90 (0.89–0.92)

0.80

0.90

 CatBoost

0.90 (0.90–0.93)

0.85

0.91