Table 3 Predictive performance of the five Models.
Model | AUC | Sensitivity | Specificity | PPV | NPV | Accuracy | p-value |
|---|---|---|---|---|---|---|---|
Training Set | |||||||
Clinical Model | 0.712 (0.612 ~ 0.812) | 0.789 | 0.636 | 0.517 | 0.86 | 68.7 | < 0.001* |
Radiomics Model | 0.752 (0.658 ~ 0.846) | 0.658 | 0.753 | 0.568 | 0.817 | 72.17 | < 0.001* |
Combined model | |||||||
LR Algorithm | 0.825 (0.740 ~ 0.911) | 0.789 | 0.779 | 0.638 | 0.882 | 78.26 | < 0.001* |
RF Algorithm | 0.823 (0.744 ~ 0.902) | 0.842 | 0.688 | 0.571 | 0.898 | 73.91 | < 0.001* |
SVM Algorithm | 0.841 (0.758 ~ 0.925) | 0.842 | 0.805 | 0.681 | 0.912 | 81.74 | < 0.001* |
Validation Set | |||||||
Clinical Model | 0.731 (0.574 ~ 0.889) | 0.813 | 0.656 | 0.542 | 0.875 | 70.83 | 0.004* |
Radiomics Model | 0.666 (0.498 ~ 0.834) | 0.625 | 0.688 | 0.5 | 0.786 | 66.67 | 0.052 |
Combined Model | |||||||
LR Algorithm | 0.828 (0.706 ~ 0.950) | 0.813 | 0.813 | 0.684 | 0.897 | 81.25 | < 0.001* |
RF Algorithm | 0.587 (0.409 ~ 0.765) | 0.313 | 0.906 | 0.625 | 0.725 | 70.83 | 0.038* |
SVM Algorithm | 0.510 (0.336 ~ 0.684) | 0.813 | 0.375 | 0.394 | 0.8 | 52.08 | 0.912 |