Table 3 Predictive performance of the five Models.

From: Prediction of axillary lymph node metastasis in triple negative breast cancer using MRI radiomics and clinical features

Model

AUC

Sensitivity

Specificity

PPV

NPV

Accuracy

p-value

Training Set

 Clinical Model

0.712 (0.612 ~ 0.812)

0.789

0.636

0.517

0.86

68.7

< 0.001*

 Radiomics Model

0.752 (0.658 ~ 0.846)

0.658

0.753

0.568

0.817

72.17

< 0.001*

Combined model

 LR Algorithm

0.825 (0.740 ~ 0.911)

0.789

0.779

0.638

0.882

78.26

< 0.001*

 RF Algorithm

0.823 (0.744 ~ 0.902)

0.842

0.688

0.571

0.898

73.91

< 0.001*

 SVM Algorithm

0.841 (0.758 ~ 0.925)

0.842

0.805

0.681

0.912

81.74

< 0.001*

Validation Set

 Clinical Model

0.731 (0.574 ~ 0.889)

0.813

0.656

0.542

0.875

70.83

0.004*

 Radiomics Model

0.666 (0.498 ~ 0.834)

0.625

0.688

0.5

0.786

66.67

0.052

Combined Model

 LR Algorithm

0.828 (0.706 ~ 0.950)

0.813

0.813

0.684

0.897

81.25

< 0.001*

 RF Algorithm

0.587 (0.409 ~ 0.765)

0.313

0.906

0.625

0.725

70.83

0.038*

 SVM Algorithm

0.510 (0.336 ~ 0.684)

0.813

0.375

0.394

0.8

52.08

0.912

  1. AUC area under the ROC curve, RF Random Forest, SVM Support Vector Machine. *Indicates statistical significance. PPV Positive Predictive Value, NPV Negative Predictive Value.