Table 3 The test data performance for the best classifiers developed using various types of peptide features for the main dataset (only the best models are shown).

From: In Silico tool for predicting, designing and scanning IL-2 inducing peptides

Features

Models

Sens

Spec

ACC

AUC

MCC

AAB

ET

0.63

0.66

64.10

0.70

0.26

AAC

ET

0.72

0.67

70.09

0.78

0.39

CeTD

XGB

0.70

0.63

67.00

0.73

0.33

DDR

ET

0.64

0.67

66.00

0.72

0.31

DPC_LEN

ET

0.75

0.73

73.76

0.82

0.48

DPC

ET

0.76

0.69

72.00

0.81

0.45

PCP

ET

0.70

0.62

64.00

0.73

0.33

RRI

RF

0.67

0.62

65.00

0.70

0.29