Table 4 ResNet architectures: Layer-By-Layer specifications35.

From: ResNet-based image processing approach for precise detection of cracks in photovoltaic panels

layer name

output size

18-layer

34-layer

50-layer

101-layer

152-layer

conv1

\(\:112\times\:112\)

7 × 7,64 stride 2

conv2_x

\(\:56\times\:56\)

3 × 3 max pool, stride 2

\(\:\left[\begin{array}{c}3\times\:3,\:64\\\:3\times\:3,\:64\end{array}\right]\times\:2\)

\(\:\left[\begin{array}{c}3\times\:3,\:64\\\:3\times\:3,\:64\end{array}\right]\times\:3\)

\(\:\left[\begin{array}{c}1\times\:1,\:64\\\:3\times\:3,\:64\\\:1\times\:1,\:256\end{array}\right]\times\:3\)

\(\:\left[\begin{array}{c}1\times\:1,\:64\\\:3\times\:3,\:64\\\:1\times\:1,\:256\end{array}\right]\times\:3\)

\(\:\left[\begin{array}{c}1\times\:1,\:64\\\:3\times\:3,\:64\\\:1\times\:1,\:256\end{array}\right]\times\:3\)

conv3_x

\(\:28\times\:28\)

\(\:\left[\begin{array}{c}3\times\:3,\:128\\\:3\times\:3,\:128\end{array}\right]\times\:2\)

\(\:\left[\begin{array}{c}3\times\:3,\:128\\\:3\times\:3,\:128\end{array}\right]\times\:4\)

\(\:\left[\begin{array}{c}1\times\:1,\:128\\\:3\times\:3,\:128\\\:1\times\:1,\:512\end{array}\right]\times\:4\)

\(\:\left[\begin{array}{c}1\times\:1,\:128\\\:3\times\:3,\:128\\\:1\times\:1,\:512\end{array}\right]\times\:4\)

\(\:\left[\begin{array}{c}1\times\:1,\:128\\\:3\times\:3,\:128\\\:1\times\:1,\:512\end{array}\right]\times\:8\)

conv4_x

\(\:14\times\:14\)

\(\:\left[\begin{array}{c}3\times\:3,\:256\\\:3\times\:3,\:256\end{array}\right]\times\:2\)

\(\:\left[\begin{array}{c}3\times\:3,\:256\\\:3\times\:3,\:256\end{array}\right]\times\:6\)

\(\:\left[\begin{array}{c}1\times\:1,\:256\\\:3\times\:3,\:256\\\:1\times\:1,\:1024\end{array}\right]\times\:6\)

\(\:\left[\begin{array}{c}1\times\:1,\:256\\\:3\times\:3,\:256\\\:1\times\:1,\:1024\end{array}\right]\times\:23\)

\(\:\left[\begin{array}{c}1\times\:1,\:256\\\:3\times\:3,\:256\\\:1\times\:1,\:1024\end{array}\right]\times\:36\)

conv5_x

\(\:7\times\:7\)

\(\:\left[\begin{array}{c}3\times\:3,\:512\\\:3\times\:3,\:512\end{array}\right]\times\:2\)

\(\:\left[\begin{array}{c}3\times\:3,\:512\\\:3\times\:3,\:512\end{array}\right]\times\:3\)

\(\:\left[\begin{array}{c}1\times\:1,\:512\\\:3\times\:3,\:512\\\:1\times\:1,\:2048\end{array}\right]\times\:3\)

\(\:\left[\begin{array}{c}1\times\:1,\:512\\\:3\times\:3,\:512\\\:1\times\:1,\:2048\end{array}\right]\times\:3\)

\(\:\left[\begin{array}{c}1\times\:1,\:512\\\:3\times\:3,\:512\\\:1\times\:1,\:2048\end{array}\right]\times\:3\)

 

\(\:1\times\:1\)

Average pool, 1000-d fc, softmax (classification head)

FLOPs

(Floating Point Operations per Second)

\(\:1.8\times\:{10}^{9}\)

\(\:3.6\times\:{10}^{9}\)

\(\:3.8\times\:{10}^{9}\)

\(\:7.6\times\:{10}^{9}\)

\(\:11.3\times\:{10}^{9}\)