Table 9 Benchmark comparison of fault diagnosis methods for mechanical vibration Signals.

From: Real time fault diagnosis in industrial robotics using discrete and slantlet wavelet transformations

Method

Application

Accuracy (%)

Processing Time (sec.)

Validation Method

Reference

CNN-based (Li et al., 2019)

Bearing fault diagnosis

99.80

11.2

10-fold CV

55

LSTM-based (Zhao et al., 2019)

Rotating machinery

99.40

12.5

5-fold CV

57

A Hybrid Adaptive Fusion DL Model (JUNYU REN et al., 2025)

Bearing fault detection

89.81

-

5-fold CV

63

Transformer-based (Li et al. ,2024)

Composite fault diagnosis of rolling machinery

94–96

-

a separate validation

64

EGN-OOD (Li et al., 2024)

Intelligent machinery OOD fault

100.00

9.5

5-fold CV

62

SLT-MLP-ANN (This study)

Robotic arm multi-joint faults

100.00

3.73

5-fold CV

This work

DWT-MLP-ANN (This study)

Robotic arm multi-joint faults

100.00

7.83

5-fold CV

This work