Table 1 Summary of flat rock pillar formulae.
From: Characterization of dip effect on strength for gently inclined rock pillar
Source | Rock Pillar Strength formula | Form | Remark |
|---|---|---|---|
Hedley33 | \({S_{p0}}=0.578{\sigma _c}\frac{{{w^{0.5}}}}{{{h^{0.75}}}}\) | power law | σc = 230 MPa |
Kimmelmann34 | \({S_{p0}}=0.691{\sigma _c}\frac{{{w^{0.46}}}}{{{h^{0.66}}}}\) | power law | σc = 94 MPa |
Krauland35 | \({S_{p0}}=0.354{\sigma _c}\left( {0.778+0.222\frac{w}{h}} \right)\) | linear | σc = 100 MPa |
\({S_{p0}}=0.420{\sigma _c}\frac{w}{h}\) | power law | - | |
Potvin36 | |||
Sjöberg37 | \({S_{p0}}=0.308{\sigma _c}\left( {0.778+0.222\frac{w}{h}} \right)\) | linear | σc = 240 MPa |
Lunder et al38 | \({S_{p0}}=0.44{\sigma _c}\left( {0.68+0.52\kappa } \right)\) Where\(\left\{ \begin{gathered} \kappa =\tan \left( {{{\cos }^{ - 1}}\frac{{1 - {C_{pav}}}}{{1+{C_{pav}}}}} \right) \hfill \\ {C_{pav}}=0.46{\left[ {\log \left( {\frac{w}{h}+0.75} \right)} \right]^{\frac{{1.4}}{{(w/h)}}}} \hfill \\ \end{gathered} \right.\) | confinement | - |
Esterhuizen et al32 | \({S_{p0}}=0.65{\sigma _c} \cdot LDF \cdot \frac{{{w^{0.30}}}}{{{h^{0.59}}}}\) | power law | LDF represents the coefficient of discontinuity, and its value ranges from 0 to 1. |