Table 2 Evaluation results of different models in ISLES 2022 segmentation results.
From: SFMANet: A Spatial-Frequency multi-scale attention network for stroke lesion segmentation
Method | DSC | Precision | Recall | F1score | MIoU |
|---|---|---|---|---|---|
UNet | 0.5910 | 0.6182 | 0.6653 | 0.5515 | 0.4892 |
MDA-Net | 0.7044 | 0.7530 | 0.7222 | 0.7368 | - |
Acc_unet | 0.7639 | 0.8150 | 0.7379 | 0.6675 | 0.6675 |
UNet++ | 0.6980 | 0.7940 | 0.7028 | 0.6784 | 0.5954 |
U2Net | 0.7325 | 0.7838 | 0.7062 | 0.7186 | 0.6401 |
AttentionUNet | 0.7352 | 0.8001 | 0.7110 | 0.7240 | 0.6394 |
SwinUNet | 0.5199 | 0.5949 | 0.5980 | 0.5031 | 0.4150 |
TransUNet | 0.6272 | 0.7666 | 0.5842 | 0.6272 | 0.5330 |
TransFuse | 0.6872 | 0.6739 | 0.7933 | 0.6868 | 0.6739 |
Polyp_PVT | 0.7000 | 0.7054 | 0.7318 | 0.6888 | 0.5802 |
HmsU-Net | 0.6597 | 0.8037 | 0.8844 | 0.6307 | 0.5679 |
MSCA-Net | 0.7385 | 0.8633 | 0.8608 | 0.7302 | 0.6343 |
NLIE-UNet | 0.7457 | 0.8923 | 0.8923 | 0.7170 | 0.6487 |
Ours | 0.7767 | 0.8784 | 0.9071 | 0.7160 | 0.6911 |