Table 6 Comparison of segmentation evaluation indexes between the Res-UNet-CA and other segmentation methods. Bold face indicates the best performance.

From: A high-precision segmentation method based on UNet for disc cutter holder of shield machine

Model

Accuracy

Precision

Recall

F1_Score

IoU

mIoU

FCN

0.9346

0.8771

0.8883

0.8827

0.7900

0.8516

LR-ASPP

0.7315

0.5113

0.7050

0.5927

0.4212

0.5437

DeepLabV3

0.8997

0.8922

0.7256

0.8003

0.6672

0.7708

DeepLabV3+

0.9499

0.9871

0.8303

0.9019

0.8213

0.8782

PSP-DANet

0.9642

0.9503

0.9188

0.9343

0.8767

0.9143

SegFormer

0.9302

0.8758

0.8733

0.8746

0.7771

0.8424

Res-UNet-CA

0.9945

0.9890

0.9911

0.990

0.9803

0.9863