Table 5 Sensitivity analysis of problem outcomes in both left and right split situations for various accuracy parameters μ (Nomani’s method).
Code iteration | Split level | Accuracy parameter (\({\varvec{\mu}})\) | Compromise optimal solution | Corresponding optimal solution | Distance b/w compromise optimal solution and Corresponding optimal solution | Preferred solution (Nomani’s Method) |
|---|---|---|---|---|---|---|
1 | LS | \(0.997\) | \((\text{25921.84,68797.39,44233.38})\) | \((\text{25921.84,98222.28,47982.31})\) | \(29662.75\) | \((25921.84,68797.39,44233.38)\) |
RS | \(0.81311\) | \((\text{26057.02,69089.12,44300.50})\) | \((\text{26057.02,98882.02,48080.15})\) | \(30031.69\) | ||
2 | LS | \(0.997\) | \((\text{25921.84,68797.39,44233.38})\) | \((\text{25921.84,98222.28,47982.31})\) | \(29662.75\) | \((\text{25921.84,68797.39,44233.38})\) |
RS | \(0.83315\) | \((\text{26044,69061.21,44275.40})\) | \((\text{26044,98818.01,48052.14})\) | \(29995.51\) | ||
3 | LS | \(0.99685\) | \((\text{25921.74,68796.48,44233.17})\) | \((\text{25921.74,98221.69,47981.98})\) | \(29663.05\) | \((\text{25921.74,68796.48,44233.17})\) |
RS | \(0.83187\) | \((\text{26044.84,69063.01,44277.02})\) | \((\text{26044.84,98822.14,48053.95})\) | \(29997.85\) | ||
4 | LS | \(0.98697\) | \((\text{25914.69,68775.48,44214.74})\) | \((\text{25914.69,98183.40,47960.13})\) | \(29645.47\) | \((\text{25914.69,68775.48,44214.74})\) |
RS | \(0.83222\) | \((\text{26044.61,69062.52,44276.58})\) | \((\text{26044.61,98821.01,48053.46})\) | \(29997.21\) | ||
5 | LS | \(0.96156\) | \((\text{25896.96,68720.35,44168.61})\) | \((\text{25896.96,98086.96,47905.10})\) | \(29603.38\) | \((\text{25896.96,68720.35,44168.61})\) |
RS | \(0.81871\) | \((\text{26053.41,69081.29,44293.55})\) | \((\text{26053.41,98864.26,48072.38})\) | \(30021.74\) | ||
6 | LS | \(0.98844\) | \((\text{25915.74,68777.90,44217.56})\) | \((\text{25915.74,98189.07,47963.36})\) | \(29648.74\) | \((\text{25915.74,68777.90,44217.56})\) |
RS | \(0.82998\) | \((\text{26046.08,69065.47,44279.43})\) | \((\text{26046.08,98828.22,48053.61})\) | \(30001.1\) | ||
7 | LS | \(0.99548\) | \((\text{25920.75,68794.06,44230.54})\) | \((\text{25920.75,98216.36,47978.93})\) | \(29660.11\) | \((\text{25920.75,68794.06,44230.54})\) |
RS | \(0.82773\) | \((\text{26047.55,69068.66,44282.26})\) | \((\text{26047.55,98835.45,48059.77})\) | \(30005.52\) | ||
8 | LS | \(0.99948\) | \((\text{25923.63,68802.17,44238.11})\) | \((\text{25923.63,98231.97,47987.84})\) | \(29667.72\) | \((\text{25923.63,68802.17,44238.11})\) |
RS | \(0.81398\) | \((\text{26056.46,69087.92,44299.42})\) | \((\text{26056.46,98879.27,48078.95})\) | \(30030.14\) | ||
9 | LS | \(0.9917\) | \((\text{25918.05,68785.78,44223.50})\) | \((\text{25918.05,98201.68,47970.56})\) | \(29653.59\) | \((\text{25918.05,68785.78,44223.50})\) |
RS | \(0.83233\) | \((\text{26044.54,69062.31,44276.44})\) | \((\text{26044.54,98820.65,48053.30})\) | \(29997.06\) | ||
10 | LS | \(0.9993\) | \((\text{25923.50,68801.85,44237.76})\) | \((\text{25923.5,98231.26,47987.44})\) | \(29667.33\) | \((\text{25923.50,68801.85,44237.76})\) |
RS | \(0.82991\) | \((\text{26046.12,69065.76,44279.49})\) | \((\text{26046.12,98828.45,48056.71})\) | \(30001.42\) |