Table 5 Sensitivity analysis of problem outcomes in both left and right split situations for various accuracy parameters μ (Nomani’s method).

From: Enhance triangular fuzzy parametric framework for solid multi objective transportation problem with split decision variables

Code iteration

Split level

Accuracy parameter (\({\varvec{\mu}})\)

Compromise optimal solution

Corresponding optimal solution

Distance b/w compromise optimal solution and Corresponding optimal solution

Preferred solution (Nomani’s Method)

1

LS

\(0.997\)

\((\text{25921.84,68797.39,44233.38})\)

\((\text{25921.84,98222.28,47982.31})\)

\(29662.75\)

\((25921.84,68797.39,44233.38)\)

RS

\(0.81311\)

\((\text{26057.02,69089.12,44300.50})\)

\((\text{26057.02,98882.02,48080.15})\)

\(30031.69\)

2

LS

\(0.997\)

\((\text{25921.84,68797.39,44233.38})\)

\((\text{25921.84,98222.28,47982.31})\)

\(29662.75\)

\((\text{25921.84,68797.39,44233.38})\)

RS

\(0.83315\)

\((\text{26044,69061.21,44275.40})\)

\((\text{26044,98818.01,48052.14})\)

\(29995.51\)

3

LS

\(0.99685\)

\((\text{25921.74,68796.48,44233.17})\)

\((\text{25921.74,98221.69,47981.98})\)

\(29663.05\)

\((\text{25921.74,68796.48,44233.17})\)

RS

\(0.83187\)

\((\text{26044.84,69063.01,44277.02})\)

\((\text{26044.84,98822.14,48053.95})\)

\(29997.85\)

4

LS

\(0.98697\)

\((\text{25914.69,68775.48,44214.74})\)

\((\text{25914.69,98183.40,47960.13})\)

\(29645.47\)

\((\text{25914.69,68775.48,44214.74})\)

RS

\(0.83222\)

\((\text{26044.61,69062.52,44276.58})\)

\((\text{26044.61,98821.01,48053.46})\)

\(29997.21\)

5

LS

\(0.96156\)

\((\text{25896.96,68720.35,44168.61})\)

\((\text{25896.96,98086.96,47905.10})\)

\(29603.38\)

\((\text{25896.96,68720.35,44168.61})\)

RS

\(0.81871\)

\((\text{26053.41,69081.29,44293.55})\)

\((\text{26053.41,98864.26,48072.38})\)

\(30021.74\)

6

LS

\(0.98844\)

\((\text{25915.74,68777.90,44217.56})\)

\((\text{25915.74,98189.07,47963.36})\)

\(29648.74\)

\((\text{25915.74,68777.90,44217.56})\)

RS

\(0.82998\)

\((\text{26046.08,69065.47,44279.43})\)

\((\text{26046.08,98828.22,48053.61})\)

\(30001.1\)

7

LS

\(0.99548\)

\((\text{25920.75,68794.06,44230.54})\)

\((\text{25920.75,98216.36,47978.93})\)

\(29660.11\)

\((\text{25920.75,68794.06,44230.54})\)

RS

\(0.82773\)

\((\text{26047.55,69068.66,44282.26})\)

\((\text{26047.55,98835.45,48059.77})\)

\(30005.52\)

8

LS

\(0.99948\)

\((\text{25923.63,68802.17,44238.11})\)

\((\text{25923.63,98231.97,47987.84})\)

\(29667.72\)

\((\text{25923.63,68802.17,44238.11})\)

RS

\(0.81398\)

\((\text{26056.46,69087.92,44299.42})\)

\((\text{26056.46,98879.27,48078.95})\)

\(30030.14\)

9

LS

\(0.9917\)

\((\text{25918.05,68785.78,44223.50})\)

\((\text{25918.05,98201.68,47970.56})\)

\(29653.59\)

\((\text{25918.05,68785.78,44223.50})\)

RS

\(0.83233\)

\((\text{26044.54,69062.31,44276.44})\)

\((\text{26044.54,98820.65,48053.30})\)

\(29997.06\)

10

LS

\(0.9993\)

\((\text{25923.50,68801.85,44237.76})\)

\((\text{25923.5,98231.26,47987.44})\)

\(29667.33\)

\((\text{25923.50,68801.85,44237.76})\)

RS

\(0.82991\)

\((\text{26046.12,69065.76,44279.49})\)

\((\text{26046.12,98828.45,48056.71})\)

\(30001.42\)

  1. Significant values are in bold.