Table 3 Model training hyperparameters range and best value.

From: Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance

Model

ML

Hyperparameters Range

Selected Values

Thermal conductivity model

LR

{‘fit_intercept’: ‘[True, False]’}

{‘fit_intercept’: True}

DT

{‘max_depth’: ‘range(3, 20)’}

{‘max_depth’: 10}

XGBoost

{‘n_estimators’: ‘range(50, 200)’,

‘learning_rate’: ‘[0.01, 0.1, 0.2]’,

‘max_depth’: ‘range(3, 10)’}

{‘n_estimators’: 100, ‘learning_rate’: 0.1,

‘max_depth’: 5}

Viscosity model

LR

{‘fit_intercept’: ‘[True, False]’}

{‘fit_intercept’: True}

DT

{‘max_depth’: ‘range(3, 20)’}

{‘max_depth’: 10}

XGBoost

{‘n_estimators’: ‘range(50, 200)’,

‘learning_rate’: ‘[0.01, 0.1, 0.2]’, ‘max_depth’: ‘range(3, 10)’}

{‘n_estimators’: 100, ‘learning_rate’: 0.1,

‘max_depth’: 5}