Table 5 Night/day class and domain train ROCAUC of logistic regression on \(z^c\) and \(z^d\) using 50 train subjects.

From: Tackling inter-subject variability in smartwatch data using factorization models

Model

Latent space

Class accuracy

Domain accuracy

MLP

\(z^c\)

89.71

8.52

FAE

\(z^c\)

82.42

10.21

\(z^d\)

74.14

10.93

GFAE

(\(m^d=0\))

\(z^c\)

90.52

14.11

\(z^d\)

87.70

16.24

GFAE

(\(m^d\ne 0\))

\(z^c\)

98.61

25.62

\(z^d\)

97.32

36.94

TFAE

\(z^c\)

98.43

10.23

\(z^d\)

98.21

28.14