Table 1 Object detection models.

From: Consistent vehicle trajectory extraction from aerial recordings using oriented object detection

\(\hbox {N}^{\,circ}\)

Type

Family

Neural Network Architecture

Ref.

#Params(M)

mAP(50-95)

(50)

1

OBB

openmmlab

cfa_r50_fpn_40e_dota_oc

35

73.5

46.27

73.45

2

OBB

openmmlab

oriented_rcnn_r50_fpn_1x_dota_le90

36

82.6

47.68

75.69

3

OBB

openmmlab

redet_re50_refpn_1x_dota_ms_rr_le90

37

65.3

50.32

79.87

4

OBB

openmmlab

roi_trans_r50_fpn_1x_dota_ms_le90

38

110.5

50.19

79.66

5

OBB

openmmlab

rotated_retinanet_obb_r50_fpn_1x_dota_ms_rr_le90

39

73.2

48.20

76.50

6

OBB

openmmlab

s2anet_r50_fpn_fp16_1x_dota_le135

40

77.5

46.74

74.19

7

OBB

ultralytics

yolov8n-obb

41

3.1

49.15

78.01

8

OBB

ultralytics

yolov8s-obb

41

11.4

50.10

79.52

9

OBB

ultralytics

yolov8m-obb

41

26.4

50.75

80.55

10

OBB

ultralytics

yolov8l-obb

41

44.5

50.86

80.73

11

OBB

ultralytics

yolov8x-obb

41

69.5

51.26

81.36

12

HBB

openmmlab

faster-rcnn_r50_fpn_ms-3x_coco\(*\)

42

41.4

26.10

39.80

13

HBB

openmmlab

retinanet_r50_fpn_ms-640-800-3x_coco\(*\)

39

36.6

22.60

36.21

14

HBB

ultralytics

yolov8n\(*\)

41

3.2

27.63

44.35

15

HBB

ultralytics

yolov8s\(*\)

41

11.2

30.70

48.41

16

HBB

ultralytics

yolov8m\(*\)

41

25.9

32.94

51.05

17

HBB

ultralytics

yolov8l\(*\)

41

43.7

33.62

51.74

18

HBB

ultralytics

yolov8x\(*\)

41

68.2

35.55

53.86

  1. * denotes the models which were retrained on the transformed DOTA dataset