Table 12 Training and validation accuracy and loss per epoch for hybrid model.
From: Transfer learning with XAI for robust malware and IoT network security
Epoch | Accuracy | Loss | Val Accuracy | Val Loss |
|---|---|---|---|---|
1 | 0.5974 | 0.6754 | 0.6815 | 0.5597 |
2 | 0.6914 | 0.5856 | 0.6810 | 0.5064 |
3 | 0.7059 | 0.5495 | 0.6792 | 0.4789 |
4 | 0.7203 | 0.5237 | 0.7254 | 0.4518 |
5 | 0.7387 | 0.5104 | 0.7184 | 0.4327 |
6 | 0.7471 | 0.4956 | 0.7188 | 0.4183 |
7 | 0.7551 | 0.4806 | 0.7182 | 0.4110 |
8 | 0.7596 | 0.4749 | 0.7192 | 0.4027 |
9 | 0.7618 | 0.4695 | 0.7199 | 0.3983 |
10 | 0.7625 | 0.4629 | 0.7208 | 0.3942 |
11 | 0.7615 | 0.4620 | 0.7212 | 0.3897 |
12 | 0.7653 | 0.4583 | 0.7217 | 0.3890 |
13 | 0.7665 | 0.4542 | 0.7282 | 0.3838 |
14 | 0.7657 | 0.4523 | 0.7294 | 0.3823 |
15 | 0.7685 | 0.4507 | 0.7317 | 0.3794 |
16 | 0.7723 | 0.4448 | 0.7336 | 0.3760 |
17 | 0.7712 | 0.4443 | 0.7340 | 0.3757 |
18 | 0.7719 | 0.4413 | 0.7350 | 0.3734 |
19 | 0.7736 | 0.4424 | 0.7370 | 0.3701 |
20 | 0.7742 | 0.4392 | 0.7377 | 0.3687 |
21 | 0.7724 | 0.4384 | 0.7377 | 0.3692 |
22 | 0.7736 | 0.4361 | 0.7382 | 0.3685 |
23 | 0.7747 | 0.4365 | 0.7398 | 0.3650 |
24 | 0.7735 | 0.4337 | 0.7399 | 0.3639 |
25 | 0.7763 | 0.4348 | 0.7408 | 0.3607 |
26 | 0.7762 | 0.4318 | 0.7414 | 0.3600 |
27 | 0.7749 | 0.4299 | 0.7415 | 0.3592 |
28 | 0.7737 | 0.4296 | 0.7415 | 0.3581 |
29 | 0.7754 | 0.4270 | 0.7416 | 0.3589 |
30 | 0.7776 | 0.4288 | 0.7430 | 0.3544 |