Table 4 Hyperparameters and model architectures.

From: Deep convolutional neural network based archimedes optimization algorithm for heart disease prediction based on secured IoT enabled health care monitoring system

Parameter

Value

Random Forest (RF)26

Number of trees

500

Max features

Sqrt

Deep Learning (DL)21

Number of input parameters

12

Number of output parameters

1

Number of hidden layers

2

Number of hidden units in each layer

45, 35

Batch size

128

Learning Rate

0.001

Single-Shot MultiBox Detector (SSD)19

Big anchor shape

[(116,90), (156,198), (373,326)]

Mid anchor shape

[(30,61), (62,45), (59,119)]

Small anchor shape

[(10,13), (16,30), (33,23)]

Architecture

Darknet

Number of layers

53

Genetic-based Multi-Feature Regression (GC-MFR)20

Number of records

100

Number of generations in each map

100

Number of keys

1