Table 4 Hyperparameters and model architectures.
Parameter | Value |
|---|---|
Random Forest (RF)26 | |
Number of trees | 500 |
Max features | Sqrt |
Deep Learning (DL)21 | |
Number of input parameters | 12 |
Number of output parameters | 1 |
Number of hidden layers | 2 |
Number of hidden units in each layer | 45, 35 |
Batch size | 128 |
Learning Rate | 0.001 |
Single-Shot MultiBox Detector (SSD)19 | |
Big anchor shape | [(116,90), (156,198), (373,326)] |
Mid anchor shape | [(30,61), (62,45), (59,119)] |
Small anchor shape | [(10,13), (16,30), (33,23)] |
Architecture | Darknet |
Number of layers | 53 |
Genetic-based Multi-Feature Regression (GC-MFR)20 | |
Number of records | 100 |
Number of generations in each map | 100 |
Number of keys | 1 |