Table 2 Description of various probability distribution functions.

From: A systematic approach to modeling monthly maximum temperature and total rainfall in Kenya

Distributions

Probability density functions

Ranges

Parameters

Normal

\(f(x) = \frac{1}{\sigma \sqrt{2\pi }} e^{-\frac{1}{2}\left( \frac{x-\mu }{\sigma }\right) ^2}\)

\(-\infty< x < \infty\)

\(\sigma\): standard deviation

\(\mu\): mean

Lognormal

\(f(x,\mu ,\sigma ) = \frac{1}{(x) \sigma \sqrt{2\pi }} \exp \left[ {-\frac{1}{2}\left( \frac{\ln (x) - \mu }{\sigma }\right) ^2} \right]\)

\(x > 0\)

\(\mu\): scale parameter

\(\sigma\): shape parameter

Weibull

\(f(x,\alpha ,\beta ) = \frac{\alpha }{\beta } \left( \frac{x}{\beta } \right) ^{\alpha -1} \exp \left( -\left( \frac{x}{\beta } \right) ^\alpha \right)\)

\(x > 0\)

\(\alpha , \beta > 0\)

\(\alpha\): shape parameter

\(\beta\): scale parameter

GEV

\(f(x;\mu , \sigma , \xi ) = \frac{1}{\sigma } \left[ 1 + \xi \left( \frac{x - \mu }{\sigma } \right) \right] ^{-\frac{1}{\xi }-1} \exp \left( - \left[ 1 + \xi \left( \frac{x - \mu }{\sigma } \right) \right] ^{-\frac{1}{\xi }} \right)\)

\(x \in \left[ \mu -\frac{\sigma }{\xi }, + \infty \right] \text {if} > 0\)

\(\mu\): location parameter

\(x \in \left[ - \infty , + \infty \right] \text { if} = 0\)

\(\xi\): shape parameter

\(x \in \left[ -\infty , \mu -\frac{\sigma }{\xi } \right] \text {if} < 0\)

\(\sigma\): scale parameter \(\sigma > 0\)

\(\mu \in \mathbb {R}\)

Exponential

\(f(x,\lambda ) = \frac{1}{\lambda } \exp {\left[ -\frac{x}{\lambda } \right] }\)

\(x \ge 0\)

\(\lambda\): rate parameter

\(x \ge 0\)

Gamma

\(f(x,\alpha ,\beta ) = \frac{1}{\beta ^\alpha \Gamma (\alpha )} x^{\alpha - 1} \exp {\left( -\frac{x}{\beta }\right) }\)

\(0< x < \infty\)

\(\alpha\): shape parameter

\(\beta\): scale parameter

Logistic

\(f(x; \mu , s) = \frac{\exp \left( -\frac{x - \mu }{s}\right) }{s \left( 1 + \exp \left( -\frac{x - \mu }{s}\right) \right) ^2}\)

\(-\infty< x < \infty\)

\(\mu\): location parameter

s: scale parameter

Gumbel

\(f(x; \alpha , \beta ) = \frac{1}{\beta } \exp \left[ -\frac{x - \alpha }{\beta } - \exp \left( -\frac{x - \alpha }{\beta }\right) \right]\)

\(-\infty< x < \infty\)

\(\alpha\): location parameter

\(\beta\): scale parameter

\(\xi = 0\): shape parameter

Uniform

\(f(x; a, b) = \frac{1}{b - a}\)

\(a \le x \le b\)

a: Lower bound

b: Upper bound

GPD

\(\frac{1}{\sigma } \left( 1 + \xi \frac{x - \mu }{\sigma }\right) ^{-\frac{1}{\xi } - 1} \text { if } \xi \ne 0\),

\(\frac{1}{\sigma } \exp \left( -\frac{x - \mu }{\sigma }\right) \text { if } \xi = 0.\),

\(x \ge \mu \text { if } \xi \ge 0;\)

\(\mu \le x \le \mu - \frac{\sigma }{\xi } \text { if } \xi < 0\)

\(\mu \le x \le \infty \text { if } \xi = 0\)

\(\mu\): location parameter

\(\sigma\): scale parameter

\(\xi\): shape parameter