Table 4 Clustering results on the three data sets with three clustering methods. Significant values are in [bold and italic].

From: Transductive zero-shot learning via knowledge graph and graph convolutional networks

  

AWA2

ImageNet50

ImageNet100

Seen

Unseen

H

Seen

Unseen

H

Seen

Unseen

H

GCNZ

GloVe300

67.19

33.34

44.57

95.33

20.92

34.31

85.37

16.06

27.03

SGCN

GloVe300

94.03

36.74

52.84

96.80

25.38

40.22

92.18

17.30

29.13

DGP

GloVe300

94.20

36.78

52.90

96.76

23.91

38.34

92.15

15.95

27.19

TGCNZ_1

GloVe300+SCAN

66.23

39.98

49.86

95.39

24.58

39.09

84.56

18.42

30.25

TGCNZ_2

GloVe300+SCAN

64.59

41.19

50.75

94.39

26.87

41.83

85.89

18.72

30.74

TGCNZ_1

GloVe300+GAT-Cluster

65.09

43.90

52.44

92.39

24.20

38.35

85.64

16.77

28.05

TGCNZ_2

GloVe300+GAT-Cluster

66.67

47.36

55.38

92.20

26.02

40.59

84.96

17.19

28.59

TGCNZ_1

GloVe300+K-means

67.00

33.88

45.00

93.97

23.57

37.69

85.36

17.43

28.95

TGCNZ_2

GloVe300+K-means

67.88

34.54

45.78

93.89

24.90

39.36

84.91

17.58

29.13