Table 5 Boundary error magnification (\({\mathfrak {s}} \rightarrow 1\)).

From: A numerical approach to fractional Volterra–Fredholm integro-differential problems using shifted Chebyshev spectral collocation

\({\mathfrak {s}}\)

\({\mathcal {M}}=4\)

\({\mathcal {M}}=8\)

Magnification factor

0.8

\(1.5502 \times 10^{-3}\)

\(8.7527 \times 10^{-4}\)

1.77

0.9

\(2.8765 \times 10^{-2}\)

\(1.1265 \times 10^{-2}\)

2.55

1.0

\(5.1673 \times 10^{-2}\)

\(1.0424 \times 10^{-2}\)

4.96